90 resultados para ELEVATION
Resumo:
Study region The Galilee and Eromanga basins are located in central Queensland, Australia. Both basins are components of the Great Artesian Basin which host some of the most significant groundwater resources in Australia. Study focus This study evaluates the influence of regional faults on groundwater flow in an aquifer/aquitard interbedded succession that form one of the largest Artesian Basins in the world. In order to assess the significance of regional faults as potential barriers or conduits to groundwater flow, vertical displacements of the major aquifers and aquitards were studied at each major fault and the general hydraulic relationship of units that are juxtaposed by the faults were considered. A three-dimensional (3D) geological model of the Galilee and Eromanga basins was developed based on integration of well log data, seismic surfaces, surface geology and elevation data. Geological structures were mapped in detail and major faults were characterised. New hydrological insights for the region Major faults that have been described in previous studies have been confirmed within the 3D geological model domain and a preliminary assessment of their hydraulic significance has been conducted. Previously unknown faults such as the Thomson River Fault (herein named) have also been identified in this study.
Resumo:
The use of GNSS tracked Lagrangian drifters allows more realistic quantification of fluid motion and dispersion coefficients than Eulerian techniques because such drifters are analogues of particles that are relevant to flow field characterisation and pollutant dispersion. Using the fast growing Real Time Kinematic (RTK) positioning technique derived from Global Satellite Navigation Systems (GNSS), drifters are developed for high frequency (10 Hz) sampling with position estimates to centimetre accuracy. The drifters are designed with small size and less direct wind drag to follow the sub-surface flow which characterizes dispersion in shallow waters. An analysis of position error from stationary observation indicates that the drifter can efficiently resolve motion up to 1 Hz. The result of the field deployments of the drifter in conjunction with acoustic Eulerian devices shows higher estimate of the drifter streamwise velocities. Single particle statistical analysis of field deployments in a shallow estuarine zone yielded dispersion coefficients estimate comparable to those of dye tracer studies. The drifters capture the tidal elevation during field studies in a tidal estuary.
Resumo:
Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound,Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range–Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range–Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range–Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.
Resumo:
This paper examines the feasibility of using vertical light pipes to naturally illuminate the central core of a multilevel building not reached by window light. The challenges addressed were finding a method to extract and distribute equal amounts of light at each level and designing collectors to improve the effectiveness of vertical light pipes in delivering low elevation sunlight to the interior. Extraction was achieved by inserting partially reflecting cones within transparent sections of the pipes at each floor level. Theory was formulated to estimate the partial reflectance necessary to provide equal light extraction at each level. Designs for daylight collectors formed from laser cut panels tilted above the light pipe were developed and the benefits and limitations of static collectors as opposed to collectors that follow the sun azimuth investigated. Performance was assessed with both basic and detailed mathematical simulation and by observations made with a five level model building under clear sky conditions.
Resumo:
This thesis is concerned with two-dimensional free surface flows past semi-infinite surface-piercing bodies in a fluid of finite-depth. Throughout the study, it is assumed that the fluid in question is incompressible, and that the effects of viscosity and surface tension are negligible. The problems considered are physically important, since they can be used to model the flow of water near the bow or stern of a wide, blunt ship. Alternatively, the solutions can be interpreted as describing the flow into, or out of, a horizontal slot. In the past, all research conducted on this topic has been dedicated to the situation where the flow is irrotational. The results from such studies are extended here, by allowing the fluid to have constant vorticity throughout the flow domain. In addition, new results for irrotational flow are also presented. When studying the flow of a fluid past a surface-piercing body, it is important to stipulate in advance the nature of the free surface as it intersects the body. Three different possibilities are considered in this thesis. In the first of these possibilities, it is assumed that the free surface rises up and meets the body at a stagnation point. For this configuration, the nonlinear problem is solved numerically with the use of a boundary integral method in the physical plane. Here the semi-infinite body is assumed to be rectangular in shape, with a rounded corner. Supercritical solutions which satisfy the radiation condition are found for various values of the Froude number and the dimensionless vorticity. Subcritical solutions are also found; however these solutions violate the radiation condition and are characterised by a train of waves upstream. In the limit that the height of the body above the horizontal bottom vanishes, the flow approaches that due to a submerged line sink in a $90^\circ$ corner. This limiting problem is also examined as a special case. The second configuration considered in this thesis involves the free surface attaching smoothly to the front face of the rectangular shaped body. For this configuration, nonlinear solutions are computed using a similar numerical scheme to that used in the stagnant attachment case. It is found that these solution exist for all supercritical Froude numbers. The related problem of the cusp-like flow due to a submerged sink in a corner is also considered. Finally, the flow of a fluid emerging from beneath a semi-infinite flat plate is examined. Here the free surface is assumed to detach from the trailing edge of the plate horizontally. A linear problem is formulated under the assumption that the elevation of the plate is close to the undisturbed free surface level. This problem is solved exactly using the Wiener-Hopf technique, and subcritical solutions are found which are characterised by a train of sinusoidal waves in the far field. The nonlinear problem is also considered. Exact relations between certain parameters for supercritical flow are derived using conservation of mass and momentum arguments, and these are confirmed numerically. Nonlinear subcritical solutions are computed, and the results are compared to those predicted by the linear theory.
Resumo:
Volcanic eruption centres of the mostly 4.5 Ma-5000 BP Newer Volcanics Province in the Hamilton area of southeastern Australia were examined in detail using a multifaceted approach, including ground truthing and analysis of ArcGIS Total Magnetic Intensity and seamless geology data, NASA Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation models and Google Earth satellite image interpretation. Sixteen eruption centres were recognised in the Hamilton area, including three previously unrecorded volcanoes-one of which, the Cas Maar, constitutes the northernmost maar-cone volcanic complex in the Western Plains subprovince. Seven previously allocated eruption centres were placed into question based on field and laboratory observations. Three phases of volcanic activity have been suggested by other authors and are interpreted to correlate with ages of >4 Ma, ca 2 Ma and <0.5 Ma, which may be further subdivided based on preservation of outcrop. Geochemical compositions of the dominantly basaltic products become increasingly alkaline and enriched in incompatible elements from Phases 1 to 2, with Phase 3 eruptions both covering the entire geochemical range and extending into increasingly enriched compositions. This research highlights the importance of a multifaceted approach to landform mapping and demonstrates that additional volcanic centres may yet be discovered in the Newer Volcanics Province
Resumo:
Mutations of UDP-N-acetyl-alpha-D-galactosamine polypeptide N-acetyl galactosaminyl transferase 3 (GALNT3) result in familial tumoural calcinosis (FTC) and the hyperostosis-hyperphosphataemia syndrome (HHS), which are autosomal recessive disorders characterised by soft-tissue calcification and hyperphosphataemia. To facilitate in vivo studies of these heritable disorders of phosphate homeostasis, we embarked on establishing a mouse model by assessing progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU), and identified a mutant mouse, TCAL, with autosomal recessive inheritance of ectopic calcification, which involved multiple tissues, and hyperphosphataemia; the phenotype was designated TCAL and the locus, Tcal. TCAL males were infertile with loss of Sertoli cells and spermatozoa, and increased testicular apoptosis. Genetic mapping localized Tcal to chromosome 2 (62.64-71.11 Mb) which contained the Galnt3. DNA sequence analysis identified a Galnt3 missense mutation (Trp589Arg) in TCAL mice. Transient transfection of wild-type and mutant Galnt3-enhanced green fluorescent protein (EGFP) constructs in COS-7 cells revealed endoplasmic reticulum retention of the Trp589Arg mutant and Western blot analysis of kidney homogenates demonstrated defective glycosylation of Galnt3 in Tcal/Tcal mice. Tcal/Tcal mice had normal plasma calcium and parathyroid hormone concentrations; decreased alkaline phosphatase activity and intact Fgf23 concentrations; and elevation of circulating 1,25-dihydroxyvitamin D. Quantitative reverse transcriptase-PCR (qRT-PCR) revealed that Tcal/Tcal mice had increased expression of Galnt3 and Fgf23 in bone, but that renal expression of Klotho, 25-hydroxyvitamin D-1α-hydroxylase (Cyp27b1), and the sodium-phosphate co-transporters type-IIa and -IIc was similar to that in wild-type mice. Thus, TCAL mice have the phenotypic features of FTC and HHS, and provide a model for these disorders of phosphate metabolism. © 2012 Esapa et al.
Resumo:
Japanese encephalitis (JE) is the most common cause of viral encephalitis and an important public health concern in the Asia-Pacific region, particularly in China where 50% of global cases are notified. To explore the association between environmental factors and human JE cases and identify the high risk areas for JE transmission in China, we used annual notified data on JE cases at the center of administrative township and environmental variables with a pixel resolution of 1 km×1 km from 2005 to 2011 to construct models using ecological niche modeling (ENM) approaches based on maximum entropy. These models were then validated by overlaying reported human JE case localities from 2006 to 2012 onto each prediction map. ENMs had good discriminatory ability with the area under the curve (AUC) of the receiver operating curve (ROC) of 0.82-0.91, and low extrinsic omission rate of 5.44-7.42%. Resulting maps showed JE being presented extensively throughout southwestern and central China, with local spatial variations in probability influenced by minimum temperatures, human population density, mean temperatures, and elevation, with contribution of 17.94%-38.37%, 15.47%-21.82%, 3.86%-21.22%, and 12.05%-16.02%, respectively. Approximately 60% of JE cases occurred in predicted high risk areas, which covered less than 6% of areas in mainland China. Our findings will help inform optimal geographical allocation of the limited resources available for JE prevention and control in China, find hidden high-risk areas, and increase the effectiveness of public health interventions against JE transmission.
Resumo:
The flooding of urbanised areas constitutes a hazard to the population and infrastructure. Floods through inundated urban environments have been studied recently and the potential impact of flowing waters on pedestrians is not well known. Herein the stability of individuals in floodwaters is reviewed based upon the re-analysis of detailed field measurements in an inundated section of the central business district of the City of Brisbane (Australia) during the 2011 flood. Detailed water elevation and velocity data were recorded. On-site observations showed some hydrodynamic instability linked to local topographic effects, in the form of a combination of fast turbulent fluctuations and (very) slow fluctuations of water level and velocity associated with surges. The flow conditions in Gardens Point Road was unsafe for individuals and a review of past guidelines suggests that many previous recommendations are over-optimistic and unsafe in real floodwaters.
Resumo:
The multifractal properties of daily rainfall time series at the stations in Pearl River basin of China over periods of up to 45 years are examined using the universal multifractal approach based on the multiplicative cascade model and the multifractal detrended fluctuation analysis (MF-DFA). The results from these two kinds of multifractal analyses show that the daily rainfall time series in this basin have multifractal behavior in two different time scale ranges. It is found that the empirical multifractal moment function K(q)K(q) of the daily rainfall time series can be fitted very well by the universal multifractal model (UMM). The estimated values of the conservation parameter HH from UMM for these daily rainfall data are close to zero indicating that they correspond to conserved fields. After removing the seasonal trend in the rainfall data, the estimated values of the exponent h(2)h(2) from MF-DFA indicate that the daily rainfall time series in Pearl River basin exhibit no long-term correlations. It is also found that K(2)K(2) and elevation series are negatively correlated. It shows a relationship between topography and rainfall variability.
Resumo:
This technical report describes a Light Detection and Ranging (LiDAR) augmented optimal path planning at low level flight methodology for remote sensing and sampling Unmanned Aerial Vehicles (UAV). The UAV is used to perform remote air sampling and data acquisition from a network of sensors on the ground. The data that contains information on the terrain is in the form of a 3D point clouds maps is processed by the algorithms to find an optimal path. The results show that the method and algorithm are able to use the LiDAR data to avoid obstacles when planning a path from a start to a target point. The report compares the performance of the method as the resolution of the LIDAR map is increased and when a Digital Elevation Model (DEM) is included. From a practical point of view, the optimal path plan is loaded and works seemingly with the UAV ground station and also shows the UAV ground station software augmented with more accurate LIDAR data.
Resumo:
Purpose Transient changes in corneal topography associated with soft and conventional or reverse geometry rigid contact lens wear have been well documented; however, only a few studies have examined the influence of scleral contact lens wear upon the cornea. Therefore, in this study, we examined the influence of modern miniscleral contact lenses, which land entirely on the sclera and overlying tissues, upon anterior corneal curvature and optics. Methods Anterior corneal topography and elevation data were acquired using Scheimpflug imaging (Pentacam HR, Oculus) immediately prior to and following 8 hours of miniscleral contact lens wear in 15 young healthy adults (mean age 22 ± 3 years, 8 East Asian, 7 Caucasian) with normal corneae. Corneal diurnal variations were accounted for using data collected on a dedicated measurement day without contact lens wear. Corneal clearance was quantified using an optical coherence tomographer (RS-3000, Nidek) following lens insertion and after 8 hours of lens wear. Results Although corneal clearance was maintained throughout the 8 hour lens wear period, significant corneal flattening (up to 0.08 ± 0.04 mm) was observed, primarily in the superior mid-peripheral cornea, which resulted in a slight increase in against-the-rule corneal astigmatism (mean +0.02/-0.15 x 94 for an 8 mm diameter). Higher order aberration terms of horizontal coma, vertical coma and spherical aberration all underwent significant changes for an 8 mm corneal diameter (p ≤ 0.01), which typically resulted in a decrease in RMS error values (mean change in total higher order RMS -0.035 ± 0.046 µm for an 8 mm diameter). There was no association between the magnitude of change in central or mid-peripheral corneal clearance during lens wear and the observed changes in corneal curvature (p > 0.05). However, Asian participants displayed a significantly greater reduction in corneal clearance (p = 0.04) and greater superior-nasal corneal flattening compared to Caucasians (p = 0.048). Conclusions Miniscleral contact lenses that vault the cornea induce significant changes in anterior corneal surface topography and higher order aberrations following 8 hours of lens wear. The region of greatest corneal flattening was observed in the superior-nasal mid-periphery, more so in Asian participants. Practitioners should be aware that corneal measurements obtained following miniscleral lens removal may mask underlying corneal steepening.
Resumo:
Introduction Recent reports have highlighted the prevalence of vitamin D deficiency and suggested an association with excess mortality in critically ill patients. Serum vitamin D concentrations in these studies were measured following resuscitation. It is unclear whether aggressive fluid resuscitation independently influences serum vitamin D. Methods Nineteen patients undergoing cardiopulmonary bypass were studied. Serum 25(OH)D3, 1α,25(OH)2D3, parathyroid hormone, C-reactive protein (CRP), and ionised calcium were measured at five defined timepoints: T1 - baseline, T2 - 5 minutes after onset of cardiopulmonary bypass (CPB) (time of maximal fluid effect), T3 - on return to the intensive care unit, T4 - 24 hrs after surgery and T5 - 5 days after surgery. Linear mixed models were used to compare measures at T2-T5 with baseline measures. Results Acute fluid loading resulted in a 35% reduction in 25(OH)D3 (59 ± 16 to 38 ± 14 nmol/L, P < 0.0001) and a 45% reduction in 1α,25(OH)2D3 (99 ± 40 to 54 ± 22 pmol/L P < 0.0001) and i(Ca) (P < 0.01), with elevation in parathyroid hormone (P < 0.0001). Serum 25(OH)D3 returned to baseline only at T5 while 1α,25(OH)2D3 demonstrated an overshoot above baseline at T5 (P < 0.0001). There was a delayed rise in CRP at T4 and T5; this was not associated with a reduction in vitamin D levels at these time points. Conclusions Hemodilution significantly lowers serum 25(OH)D3 and 1α,25(OH)2D3, which may take up to 24 hours to resolve. Moreover, delayed overshoot of 1α,25(OH)2D3 needs consideration. We urge caution in interpreting serum vitamin D in critically ill patients in the context of major resuscitation, and would advocate repeating the measurement once the effects of the resuscitation have abated.
Resumo:
Carrier phase ambiguity resolution over long baselines is challenging in BDS data processing. This is partially due to the variations of the hardware biases in BDS code signals and its dependence on elevation angles. We present an assessment of satellite-induced code bias variations in BDS triple-frequency signals and the ambiguity resolutions procedures involving both geometry-free and geometry-based models. First, since the elevation of a GEO satellite remains unchanged, we propose to model the single-differenced fractional cycle bias with widespread ground stations. Second, the effects of code bias variations induced by GEO, IGSO and MEO satellites on ambiguity resolution of extra-wide-lane, wide-lane and narrow-lane combinations are analyzed. Third, together with the IGSO and MEO code bias variations models, the effects of code bias variations on ambiguity resolution are examined using 30-day data collected over the baselines ranging from 500 to 2600 km in 2014. The results suggest that although the effect of code bias variations on the extra-wide-lane integer solution is almost ignorable due to its long wavelength, the wide-lane integer solutions are rather sensitive to the code bias variations. Wide-lane ambiguity resolution success rates are evidently improved when code bias variations are corrected. However, the improvement of narrow-lane ambiguity resolution is not obvious since it is based on geometry-based model and there is only an indirect impact on the narrow-lane ambiguity solutions.
Resumo:
A key challenge of wide area kinematic positioning is to overcome the effects of the varying hardware biases in code signals of the BeiDou system. Based on three geometryfree/ionosphere-free combinations, the elevation-dependent code biases are modelled for all BeiDou satellites. Results from the data sets of 30-day for 5 baselines of 533 to 2545 km demonstrate that the wide-lane (WL) integer-fixing success rates of 98% to 100% can be achieved within 25 min. Under the condition of HDOP of less than 2, the overall RMS statistics show that ionospheric-free WL single-epoch solutions achieve 24 to 50 cm in the horizontal direction. Smoothing processing over the moving window of 20 min reduces the RMS values by a factor of about 2. Considering distance-independent nature, the above results show the potential that reliable and high precision positioning services could be provided in a wide area based on a sparsely distributed ground network.