106 resultados para Drugs - Side effects
Resumo:
New members on bone marrow registries worldwide are needed to allow sufficient diversity in the donor pool to meet patient needs. We used the theory of planned behaviour belief-basis and surveyed students who had not donated blood previously (i.e. non-donors) (N = 150) about the behavioural, normative, and control beliefs informing their intentions to join the Australian Bone Marrow Donor Registry. Key beliefs predicting non-donors’ intentions included: viewing bone marrow donation as an invasion of the body (β = −.35), normative support from parents (β = .40), anticipating pain/side effects from giving blood (β = −.27), and lack of knowledge about how to register (β = −.30). Few non-donors endorsed these beliefs, suggesting they are ideal targets for change in strategies encouraging bone marrow donor registration.
Resumo:
BACKGROUND: In single-group studies, chromosomal rearrangements of the anaplastic lymphoma kinase gene (ALK ) have been associated with marked clinical responses to crizotinib, an oral tyrosine kinase inhibitor targeting ALK. Whether crizotinib is superior to standard chemotherapy with respect to efficacy is unknown. METHODS: We conducted a phase 3, open-label trial comparing crizotinib with chemotherapy in 347 patients with locally advanced or metastatic ALK-positive lung cancer who had received one prior platinum-based regimen. Patients were randomly assigned to receive oral treatment with crizotinib (250 mg) twice daily or intravenous chemotherapy with either pemetrexed (500 mg per square meter of body-surface area) or docetaxel (75 mg per square meter) every 3 weeks. Patients in the chemotherapy group who had disease progression were permitted to cross over to crizotinib as part of a separate study. The primary end point was progression-free survival. RESULTS: The median progression-free survival was 7.7 months in the crizotinib group and 3.0 months in the chemotherapy group (hazard ratio for progression or death with crizotinib, 0.49; 95% confidence interval [CI], 0.37 to 0.64; P<0.001). The response rates were 65% (95% CI, 58 to 72) with crizotinib, as compared with 20% (95% CI, 14 to 26) with chemotherapy (P<0.001). An interim analysis of overall survival showed no significant improvement with crizotinib as compared with chemotherapy (hazard ratio for death in the crizotinib group, 1.02; 95% CI, 0.68 to 1.54; P=0.54). Common adverse events associated with crizotinib were visual disorder, gastrointestinal side effects, and elevated liver aminotransferase levels, whereas common adverse events with chemotherapy were fatigue, alopecia, and dyspnea. Patients reported greater reductions in symptoms of lung cancer and greater improvement in global quality of life with crizotinib than with chemotherapy. CONCLUSIONS: Crizotinib is superior to standard chemotherapy in patients with previously treated, advanced non-small-cell lung cancer with ALK rearrangement. (Funded by Pfizer; ClinicalTrials.gov number, NCT00932893.) Copyright © 2013 Massachusetts Medical Society.
Resumo:
Purpose A phase II study was designed to assess the efficacy and safety of Caelyx (liposomal doxorubicin) in patients with advanced or metastatic gastric cancer. Methods A total of 25 patients with gastric adenocarcinoma were treated with Caelyx 45 mg/m2 every 28 days as first-line therapy for advanced disease. Patients were treated until tumour progression or unacceptable toxicity. Results One patient was withdrawn from the study after experiencing a severe infusion reaction. Of the 24 evaluable patients, 1 had a partial response, 7 had stable disease and the others progressed. Side effects, in particular palmar-plantar erythrodysaesthesia and haematological toxicity, were minor. Conclusions We conclude that while this dose and schedule of Caelyx in this patient group is acceptable, further studies with this regimen cannot be recommended due to the lack of antitumour activity seen.
Resumo:
Mucosal adjuvants are important to overcome the state of immune tolerance normally associated with mucosal delivery and to enhance adaptive immunity to often-weakly immunogenic subunit vaccine antigens. Unfortunately, adverse side effects of many experimental adjuvants limit the number of adjuvants approved for vaccination. Lipid C is a novel, non-toxic, lipid oral vaccine-delivery formulation, developed originally for oral delivery of the live Mycobacterium bovis Bacille Calmette-Guerin (BCG) vaccine. In the present study, murine models of chlamydial respiratory and genital tract infections were used to determine whether transcutaneous immunization (TCI) with Lipid C-incorporated protein antigens could elicit protective immunity at the genital and respiratory mucosae. BALB/c mice were immunized transcutaneously with Lipid C containing the chlamydial major outer membrane protein (MOMP), with and without addition of cholera toxin and CpG-ODN 1826 (CT/CpG). Both vaccine combinations induced mixed cell-mediated and mucosal antibody immune responses. Immunization with Lipid C-incorporated MOMP (Lipid C/MOMP), either alone or with CT/CpG resulted in partial protection following live challenge with Chlamydia muridarum as evidenced by a significant reduction in recoverable Chlamydia from both the genital secretions and lung tissue. Protection induced by immunization with Lipid C/MOMP alone was not further enhanced by the addition of CT/CpG. These results highlight the potential of Lipid C as a novel mucosal adjuvant capable of targeting multiple mucosal surfaces following TCI. Protection at both the respiratory and genital mucosae was achieved without the requirement for potentially toxic adjuvants, suggesting that Lipid C may provide a safe effective mucosal adjuvant for human vaccination.
Resumo:
This paper will give a ‘criminological perspective’ on mandatory sentencing. It will however largely avoid the issues of the effect of mandatory sentencing provisions on the judicial process and judicial independence, as this has already been covered by Sir Anthony Mason. It will also avoid the legal issues concerning the constitutional, human rights and international law aspects of mandatory sentencing which will be covered by later speakers. The aim will be to give a brief overview of research which evaluates the effects of mandatory sentencing provisions in terms of the available evidence of whether they meet their stated aims of deterrence, selective incapacitation and the reduction of crime rates. This will be done in two parts, first in relation to the more extensive experiment in mandatory sentencing in the USA which has provided some of the impetus and metaphors ("three strikes") for recent Australian developments; and second the recent mandatory sentencing provisions in Western Australia (WA) and the Northern Territory (NT). Evidence from both the US and WA (NT is hard to assess because of the lack of proper monitoring and criminal statistics) indicates that mandatory sentencing does not produce the effects of deterrence, selective incapacitation and crime reduction which are its stated justifications and does produce a range of damaging side effects in terms of distortion of the judicial process, wildly disproportionate sentencing, additional financial and social cost and deepening social exclusion of individuals and particular communities. So what is left are the less acknowledged underpinnings of mandatory sentencing in the form of the symbolic politics of law and order, the politics of social exclusion and a displacement of racial anxieties and hostilities onto the terrain of the legal. In fashioning this necessarily brief overview a number of sources have been heavily drawn upon, in particular the excellent work by Neil Morgan from UWA (Morgan, 1995;1999; 2000); Dianne Johnson and George Zdenkowski in their detailed report to the Senate Inquiry (2000); and a number of articles appearing in 1999 in an excellent special issue of the UNSW Law Journal, all of which are highly recommended for further reading.
Resumo:
The transplantation of autologous bone graft as a treatment for large bone defects has the limitation of harvesting co-morbidity and limited availability. This drives the orthopaedic research community to develop bone graft substitutes. Routinely, supra-physiological doses of bone morphogenetic proteins (BMPs) are applied perpetuating concerns over undesired side effects and cost of BMPs. We therefore aimed to design a composite scaffold that allows maintenance of protein bioactivity and enhances growth factor retention at the implantation site. Critical-sized defects in sheep tibiae were treated with the autograft and with two dosages of rhBMP-7, 3.5 mg and 1.75 mg, embedded in a slowly degradable medical grade poly(ε-caprolactone) (PCL) scaffold with β-tricalcium phosphate microparticles (mPCL-TCP). Specimens were characterised by biomechanical testing, microcomputed tomography and histology. Bridging was observed within 3 months for the autograft and both rhBMP-7 treatments. No significant difference was observed between the low and high rhBMP-7 dosages or between any of the rhBMP-7 groups and autograft implantation. Scaffolds alone did not induce comparable levels of bone formation compared to the autograft and rhBMP-7 groups. In summary, the mPCL-TCP scaffold with the lower rhBMP-7 dose led to equivalent results to autograft transplantation or the high BMP dosage. Our data suggest a promising clinical future for BMP application in scaffold-based bone tissue engineering, lowering and optimising the amount of required BMP.
Resumo:
Musculoskeletal health can be compromised by breast cancer treatment. In particular, bone loss and arthralgias are prevalent side effects experienced by women treated with chemotherapy and/or adjuvant endocrine therapy. Bone loss leads to osteoporosis and related fractures, while arthralgias threaten quality of life and compliance to treatment. Because the processes that lead to these musculoskeletal problems are initiated when treatment begins, early identification of women who may be at higher risk of developing problems, routine monitoring of bone density and pain at certain stages of treatment, and prudent application of therapeutic interventions are key to preventing and/or minimizing musculoskeletal sequelae. Exercise may be a particularly suitable intervention strategy because of its potential to address a number of impairments; it may slow bone loss, appears to reduce joint pain in noncancer conditions, and improves other breast cancer outcomes. Research efforts continue in the areas of etiology, measurement, and treatment of bone loss and arthralgias. The purpose of this review is to provide an overview of the current knowledge on the management and treatment of bone loss and arthralgias in breast cancer survivors and to present a framework for rehabilitation care to preserve musculoskeletal health in women treated for breast cancer.
Resumo:
This paper presents a practical recursive fault detection and diagnosis (FDD) scheme for online identification of actuator faults for unmanned aerial systems (UASs) based on the unscented Kalman filtering (UKF) method. The proposed FDD algorithm aims to monitor health status of actuators and provide indication of actuator faults with reliability, offering necessary information for the design of fault-tolerant flight control systems to compensate for side-effects and improve fail-safe capability when actuator faults occur. The fault detection is conducted by designing separate UKFs to detect aileron and elevator faults using a nonlinear six degree-of-freedom (DOF) UAS model. The fault diagnosis is achieved by isolating true faults by using the Bayesian Classifier (BC) method together with a decision criterion to avoid false alarms. High-fidelity simulations with and without measurement noise are conducted with practical constraints considered for typical actuator fault scenarios, and the proposed FDD exhibits consistent effectiveness in identifying occurrence of actuator faults, verifying its suitability for integration into the design of fault-tolerant flight control systems for emergency landing of UASs.
Resumo:
We investigated the effects of the matrix metalloproteinase 13 (MMP13)-selective inhibitor, 5-(4-{4-[4-(4-fluorophenyl)-1,3-oxazol-2-yl]phenoxy}phenoxy)-5-(2-methoxyethyl) pyrimidine-2,4,6(1H,3H,5H)-trione (Cmpd-1), on the primary tumor growth and breast cancer-associated bone remodeling using xenograft and syngeneic mouse models. We used human breast cancer MDA-MB-231 cells inoculated into the mammary fat pad and left ventricle of BALB/c Nu/Nu mice, respectively, and spontaneously metastasizing 4T1.2-Luc mouse mammary cells inoculated into mammary fat pad of BALB/c mice. In a prevention setting, treatment with Cmpd-1 markedly delayed the growth of primary tumors in both models, and reduced the onset and severity of osteolytic lesions in the MDA-MB-231 intracardiac model. Intervention treatment with Cmpd-1 on established MDA-MB-231 primary tumors also significantly inhibited subsequent growth. In contrast, no effects of Cmpd-1 were observed on soft organ metastatic burden following intracardiac or mammary fat pad inoculations of MDA-MB-231 and 4T1.2-Luc cells respectively. MMP13 immunostaining of clinical primary breast tumors and experimental mice tumors revealed intra-tumoral and stromal expression in most tumors, and vasculature expression in all. MMP13 was also detected in osteoblasts in clinical samples of breast-to-bone metastases. The data suggest that MMP13-selective inhibitors, which lack musculoskeletal side effects, may have therapeutic potential both in primary breast cancer and cancer-induced bone osteolysis.
Resumo:
Background: The present study aimed to evaluate the antitumor effectiveness of systemic interleukin (IL)-12 gene therapy in murine sarcoma models, and to evaluate its interaction with the irradiation of tumors and metastases. To avoid toxic side-effects of IL-12 gene therapy, the objective was to achieve the controlled release of IL-12 after intramuscular gene electrotransfer. Methods: Gene electrotransfer of the plasmid pORF-mIL12 was performed into the tibialis cranialis in A/J and C57BL/6 mice. Systemic release of the IL-12 was monitored in the serum of mice after carrying out two sets of intramuscular IL-12 gene electrotransfer of two different doses of plasmid DNA. The antitumor effectiveness of IL-12 gene electrotransfer alone or in combination with local tumor or lung irradiation with X-rays, was evaluated on subcutaneous SA-1 and LPB tumors, as well as on lung metastases. Results: A synergistic antitumor effect of intramuscular gene electrotransfer combined with local tumor irradiation was observed as a result of the systemic distribution of IL-12. The gene electrotransfer resulted in up to 28% of complete responses of tumors. In combination with local tumor irradiation, the curability was increased by up to 100%. The same effect was observed for lung metastases, where a potentiating factor of 1.3-fold was determined. The amount of circulating IL-12 was controlled by the number of repeats of gene electrotransfer and by the amount of the injected plasmid. Conclusions: The present study demonstrates the feasibility of treatment by IL-12 gene electrotransfer combined with local tumor or lung metastases irradiation on sarcoma tumors for translation into the clinical setting. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
Mutations of K-ras have been found in 30-60% of colorectal carcinomas and are believed to be associated with tumor initiation, tumor progression and metastasis formation. Therefore, silencing of mutant K-ras expression has become an attractive therapeutic strategy for colorectal cancer treatment. The aim of our study was to investigate the effect of microRNA (miRNA) molecules directed against K-ras (miRNA-K-ras) on K-ras expression level and the growth of colorectal carcinoma cell line LoVo in vitro and in vivo. In addition, we evaluated electroporation as a gene delivery method for transfection of LoVo cells and tumors with plasmid DNA encoding miRNA-K-ras (pmiRNA-K-ras). Results of our study indicated that miRNAs targeting K-ras efficiently reduced K-ras expression and cell survival after in vitro electrotransfection of LoVo cells with pmiRNA-K-ras. In vivo, electroporation has proven to be a simple and efficient delivery method for local administration of pmiRNA-K-ras molecules into LoVo tumors. This therapy shows pronounced antitumor effectiveness and has no side effects. The obtained results demonstrate that electrogene therapy with miRNA-K-ras molecules can be potential therapeutic strategy for treatment of colorectal cancers harboring K-ras mutations. © 2010 Nature Publishing Group All rights reserved.
Resumo:
Cancer is one of the most life-threatening diseases with many forms still regarded as incurable. The conventional cancer treatments have unwanted side effects such as the death of normal cells. A therapy that can accurately target and effectively kill tumor cells could address the inadequacies of the available therapies. Atmospheric gas plasmas (AGP) that are able to specifically kill cancerous cells offer a promising alternative approach compared to conventional therapies. AGP have been shown to exploit tumor-specific genetic defects and a recent trial in mice has confirmed its antitumor effects. The mechanism by which the AGP act on tumor cells but not normal cells is not fully understood. A review of the current literature suggests that reactive oxygen species (ROS) generated by AGP induce death of cancer cells by impairing the function of intracellular regulatory factors. The majority of cancer cells are defective in tumor suppressors that interfere normal cell growth pathways. It appears that pro-oncogene or tumor suppressor-dependent regulation of antioxidant/or ROS signaling pathways may be involved in AGP-induced cancer cell death. The toxic effects of ROS are mitigated by normal cells by adjustment of their metabolic pathways. On the other hand, tumor cells are mostly defective in several regulatory signaling pathways which lead to the loss of metabolic balance within the cells and consequently, the regulation of cell growth. This review article evaluates the impact of AGP on the activation of cellular signaling and its importance for exploring mechanisms for safe and efficient anticancer therapies.
Resumo:
Atmospheric gas plasmas (AGPs) are able to selectively induce apoptosis in cancer cells, offering a promising alternative to conventional therapies that have unwanted side effects such as drug resistance and toxicity. However, the mechanism of AGP-induced cancer cell death is unknown. In this study, AGP is shown to up-regulate intracellular reactive oxygen species (ROS) levels and induce apoptosis in melanoma but not normal melanocyte cells. By screening genes involved in apoptosis, we identify tumor necrosis factor (TNF)-family members as the most differentially expressed cellular genes upon AGP treatment of melanoma cells. TNF receptor 1 (TNFR1) antagonist-neutralizing antibody specifically inhibits AGP-induced apoptosis signal, regulating apoptosis signal-regulating kinase 1 (ASK1) activity and subsequent ASK1-dependent apoptosis. Treatment of cells with intracellular ROS scavenger N-acetyl-l-cysteine also inhibits AGP-induced activation of ASK1, as well as apoptosis. Moreover, depletion of intracellular ASK1 reduces the level of AGP-induced oxidative stress and apoptosis. The evidence for TNF-signaling dependence of ASK1-mediated apoptosis suggests possible mechanisms for AGP activation and regulation of apoptosis-signaling pathways in tumor cells.
Consumers persepctive on pharmacists integration into private primary healthcare clinics in Malaysia
Resumo:
Background: Pharmacists are considered medication experts but are underutilised mainly at the periphery of the primary healthcare team. General medical practitioners (GPs) in Malaysian private healthcare clinics are granted rights to prescribe and dispense medications, thus furhter limiting pharmacists involvement in ensuring safe use of medicines. The integration of pharmacist into private primary healthcare clinics has the potential to reduce medication-relation problems. Objective: To explore the views of consumers on the integration of pharmacists within private primary healthcare clinics in Malaysia. Method: A purposive sample of healthcare consumers in Selangor and Kuala Lumpur, Malaysia were invited to participate in focus groups and semi-structured interviews. Sessions were audio recorded and transcribed verbatim and thematically analysed using NVivo 10. Results: A total of 24 healthcare consumers particpated in two focus groups and six semi-structured interviews. Four major themes were identified: (1) Pharmacists role viewed mainly as supplying medications, (2) Readiness to accept pharmacists in private healthcare clinics, (3) Willingness to pay for pharmacy services, and (4) Concerns about GPs resistance to pharmacist integration. Consumers felt that a pharmacist integrated into private prumary healthcare clinics could offer potential benefits such as counter-checking prescriptions to ensure correct medication is supplied and counselling consumers on their medications and the potential side effects. The potential to increase in costs to consumers and GPs reluctance were perceived as barriers to integration. Conclusion: This study provides insights into consumers perspectives on the roles of pharmacists within private primary healthcare clinics in Malaysia. Consumers generally supported pharmacist integration into private primary healthcare clinics. However, for pharmacists to expand their capacity in providing integrated and collaborative primary care services to consumers, barriers to pharmacist integration need to be addressed.
Resumo:
BRAF represents one of the most frequently mutated protein kinase genes in human tumours. The mutation is commonly tested in pathology practice. BRAF mutation is seen in melanoma, papillary thyroid carcinoma (including papillary thyroid carcinoma arising from ovarian teratoma), ovarian serous tumours, colorectal carcinoma, gliomas, hepatobiliary carcinomas and hairy cell leukaemia. In these cancers, various genetic aberrations of the BRAF proto-oncogene, such as different point mutations and chromosomal rearrangements, have been reported. The most common mutation, BRAF V600E, can be detected by DNA sequencing and immunohistochemistry on formalin fixed, paraffin embedded tumour tissue. Detection of BRAF V600E mutation has the potential for clinical use as a diagnostic and prognostic marker. In addition, a great deal of research effort has been spent in strategies inhibiting its activity. Indeed, recent clinical trials involving BRAF selective inhibitors exhibited promising response rates in metastatic melanoma patients. Clinical trials are underway for other cancers. However, cutaneous side effects of treatment have been reported and therapeutic response to cancer is short-lived due to the emergence of several resistance mechanisms. In this review, we give an update on the clinical pathological relevance of BRAF mutation in cancer. It is hoped that the review will enhance the direction of future research and assist in more effective use of the knowledge of BRAF mutation in clinical practice.