435 resultados para Distributed generation (DG)
Resumo:
We introduce the notion of distributed password-based public-key cryptography, where a virtual high-entropy private key is implicitly defined as a concatenation of low-entropy passwords held in separate locations. The users can jointly perform private-key operations by exchanging messages over an arbitrary channel, based on their respective passwords, without ever sharing their passwords or reconstituting the key. Focusing on the case of ElGamal encryption as an example, we start by formally defining ideal functionalities for distributed public-key generation and virtual private-key computation in the UC model. We then construct efficient protocols that securely realize them in either the RO model (for efficiency) or the CRS model (for elegance). We conclude by showing that our distributed protocols generalize to a broad class of “discrete-log”-based public-key cryptosystems, which notably includes identity-based encryption. This opens the door to a powerful extension of IBE with a virtual PKG made of a group of people, each one memorizing a small portion of the master key.
Resumo:
This special issue of Networking Science focuses on Next Generation Network (NGN) that enables the deployment of access independent services over converged fixed and mobile networks. NGN is a packet-based network and uses the Internet protocol (IP) to transport the various types of traffic (voice, video, data and signalling). NGN facilitates easy adoption of distributed computing applications by providing high speed connectivity in a converged networked environment. It also makes end user devices and applications highly intelligent and efficient by empowering them with programmability and remote configuration options. However, there are a number of important challenges in provisioning next generation network technologies in a converged communication environment. Some preliminary challenges include those that relate to QoS, switching and routing, management and control, and security which must be addressed on an urgent or emergency basis. The consideration of architectural issues in the design and pro- vision of secure services for NGN deserves special attention and hence is the main theme of this special issue.
Resumo:
Ascidians are marine invertebrates that have been a source of numerous cytotoxic compounds. Of the first six marine-derived drugs that made anticancer clinical trials, three originated from ascidian specimens. In order to identify new anti-neoplastic compounds, an ascidian extract library (143 samples) was generated and screened in MDA-MB-231 breast cancer cells using a real-time cell analyzer (RTCA). This resulted in 143 time-dependent cell response profiles (TCRP), which are read-outs of changes to the growth rate, morphology, and adhesive characteristics of the cell culture. Twenty-one extracts affected the TCRP of MDA-MB-231 cells and were further investigated regarding toxicity and specificity, as well as their effects on cell morphology and cell cycle. The results of these studies were used to prioritize extracts for bioassay-guided fractionation, which led to the isolation of the previously identified marine natural product, eusynstyelamide B (1). This bis-indole alkaloid was shown to display an IC50 of 5 μM in MDA-MB-231 cells. Moreover, 1 caused a strong cell cycle arrest in G2/M and induced apoptosis after 72 h treatment, making this molecule an attractive candidate for further mechanism of action studies.
Resumo:
Rapid development of plug-in hybrid electric vehicles (PHEVs) brings new challenges and opportunities to the power industry. A large number of idle PHEVs can potentially be employed to form a distributed energy storage system for supporting renewable generation. To reduce the negative effects of unsteady renewable generation outputs, a stochastic optimization-based dispatch model capable of handling uncertain outputs of PHEVs and renewable generation is formulated in this paper. The mathematical expectations, second-order original moments, and variances of wind and photovoltaic (PV) generation outputs are derived analytically. Incorporated all the derived uncertainties, a novel generation shifting objective is proposed. The cross-entropy (CE) method is employed to solve this optimal dispatch model. Multiple patterns of renewable generation depending on seasons and renewable market shares are investigated. The feasibility and efficiency of the developed optimal dispatch model, as well as the CE method, are demonstrated with a 33-node distribution system.
Resumo:
Understanding the dynamics of disease spread is essential in contexts such as estimating load on medical services, as well as risk assessment and interven- tion policies against large-scale epidemic outbreaks. However, most of the information is available after the outbreak itself, and preemptive assessment is far from trivial. Here, we report on an agent-based model developed to investigate such epidemic events in a stylised urban environment. For most diseases, infection of a new individual may occur from casual contact in crowds as well as from repeated interactions with social partners such as work colleagues or family members. Our model therefore accounts for these two phenomena. Given the scale of the system, efficient parallel computing is required. In this presentation, we focus on aspects related to paralllelisation for large networks generation and massively multi-agent simulations.
Resumo:
An intrinsic challenge associated with evaluating proposed techniques for detecting Distributed Denial-of-Service (DDoS) attacks and distinguishing them from Flash Events (FEs) is the extreme scarcity of publicly available real-word traffic traces. Those available are either heavily anonymised or too old to accurately reflect the current trends in DDoS attacks and FEs. This paper proposes a traffic generation and testbed framework for synthetically generating different types of realistic DDoS attacks, FEs and other benign traffic traces, and monitoring their effects on the target. Using only modest hardware resources, the proposed framework, consisting of a customised software traffic generator, ‘Botloader’, is capable of generating a configurable mix of two-way traffic, for emulating either large-scale DDoS attacks, FEs or benign traffic traces that are experimentally reproducible. Botloader uses IP-aliasing, a well-known technique available on most computing platforms, to create thousands of interactive UDP/TCP endpoints on a single computer, each bound to a unique IP-address, to emulate large numbers of simultaneous attackers or benign clients.
Resumo:
This project was a step forward in improving the voltage profile of traditional low voltage distribution networks with high photovoltaic generation or high peak demand. As a practical and economical solution, the developed methods use a Dynamic Voltage Restorer or DVR, which is a series voltage compensator, for continuous and communication-less power quality enhancement. The placement of DVR in the network is optimised in order to minimise its power rating and cost. In addition, new approaches were developed for grid synchronisation and control of DVR which are integrated with the voltage quality improvement algorithm for stable operation.
Resumo:
This demonstration highlights the applications of our research work i.e. second generation (Scalable Fault Tolerant Agent Grooming Environment - SAGE) Multi Agent System, Integration of Software Agents and Grid Computing and Autonomous Agent Architecture in the Agent Platform. It is a conference planner application that uses collaborative effort of services deployed geographically wide in different technologies i.e. Software Agents, Grid computing and Web services to perform useful tasks as required. Copyright 2005 ACM.