336 resultados para Delay control systems


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work presents two UAS See and Avoid approaches using Fuzzy Control. We compare the performance of each controller when a Cross-Entropy method is applied to optimase the parameters for one of the controllers. Each controller receive information from an image processing front-end that detect and track targets in the environment. Visual information is then used under a visual servoing approach to perform autonomous avoidance. Experimental flight trials using a small quadrotor were performed to validate and compare the behaviour of both controllers

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Establishing a persistent presence in the ocean with an Autonomous Underwater Vehicle capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of Lagrangian profiling floats for such extended deployments. We propose a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy to achieve general control of this minimally-actuated underwater vehicle. We extend experimentally validated techniques for utilising ocean current models to control under-actuated autonomous underwater vehicles by presenting this investigation into the application of these methods on profiling floats. With the appropriate vertical actuation, and utilising spatiotemporal variations in water speed and direction, we show that broad controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution over a given duration. The computed depth plan is generated with a model predictive controller, and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA USA, that show surprising results in the ability of a drifting vehicle to maintain a prescribed course and reach a desired location.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes system identification, estimation and control of translational motion and heading angle for a cost effective open-source quadcopter — the MikroKopter. The dynamics of its built-in sensors, roll and pitch attitude controller, and system latencies are determined and used to design a computationally inexpensive multi-rate velocity estimator that fuses data from the built-in inertial sensors and a low-rate onboard laser range finder. Control is performed using a nested loop structure that is also computationally inexpensive and incorporates different sensors. Experimental results for the estimator and closed-loop positioning are presented and compared with ground truth from a motion capture system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A physiological control system was developed for a rotary left ventricular assist device (LVAD) in which the target pump flow rate (LVADQ) was set as a function of left atrial pressure (LAP), mimicking the Frank-Starling mechanism. The control strategy was implemented using linear PID control and was evaluated in a pulsatile mock circulation loop using a prototyped centrifugal pump by varying pulmonary vascular resistance to alter venous return. The control strategy automatically varied pump speed (2460 to 1740 to 2700 RPM) in response to a decrease and subsequent increase in venous return. In contrast, a fixed-speed pump caused a simulated ventricular suction event during low venous return and higher ventricular volumes during high venous return. The preload sensitivity was increased from 0.011 L/min/mmHg in fixed speed mode to 0.47L/min/mmHg, a value similar to that of the native healthy heart. The sensitivity varied automatically to maintain the LAP and LVADQ within a predefined zone. This control strategy requires the implantation of a pressure sensor in the left atrium and a flow sensor around the outflow cannula of the LVAD. However, appropriate pressure sensor technology is not yet commercially available and so an alternative measure of preload such as pulsatility of pump signals should be investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a nonlinear H_infinity controller for stabilization of velocities, attitudes and angular rates of a fixed-wing unmanned aerial vehicle (UAV) in a windy environment. The suggested controller aims to achieve a steady-state flight condition in the presence of wind gusts such that the host UAV can be maneuvered to avoid collision with other UAVs during cruise flight with safety guarantees. This paper begins with building a proper model capturing flight aerodynamics of UAVs. Then a nonlinear controller is developed with gust attenuation and rapid response properties. Simulations are conducted for the Shadow UAV to verify performance of the proposed con- troller. Comparative studies with the proportional-integral-derivative (PID) controllers demonstrate that the proposed controller exhibits great performance improvement in a gusty environment, making it suitable for integration into the design of flight control systems for cruise flight of UAVs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Physical access control systems play a central role in the protection of critical infrastructures, where both the provision of timely access and preserving the security of sensitive areas are paramount. In this paper we discuss the shortcomings of existing approaches to the administration of physical access control in complex environments. At the heart of the problem is the current dependency on human administrators to reason about the implications of the provision or the revocation of staff access to an area within these facilities. We demonstrate how utilising Building Information Models (BIMs) and the capabilities they provide, including 3D representation of a facility and path-finding can reduce possible intentional or accidental errors made by security administrators.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Cross-Entropy (CE) is an efficient method for the estimation of rare-event probabilities and combinatorial optimization. This work presents a novel approach of the CE for optimization of a Soft-Computing controller. A Fuzzy controller was designed to command an unmanned aerial system (UAS) for avoiding collision task. The only sensor used to accomplish this task was a forward camera. The CE is used to reach a near-optimal controller by modifying the scaling factors of the controller inputs. The optimization was realized using the ROS-Gazebo simulation system. In order to evaluate the optimization a big amount of tests were carried out with a real quadcopter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes an efficient and online learning control system that uses the successful Model Predictive Control (MPC) method in a model based locally weighted learning framework. The new approach named Locally Weighted Learning Model Predictive Control (LWL-MPC) has been proposed as a solution to learn to control complex and nonlinear Elastic Joint Robots (EJR). Elastic Joint Robots are generally difficult to learn to control due to their elastic properties preventing standard model learning techniques from being used, such as learning computed torque control. This paper demonstrates the capability of LWL-MPC to perform online and incremental learning while controlling the joint positions of a real three Degree of Freedom (DoF) EJR. An experiment on a real EJR is presented and LWL-MPC is shown to successfully learn to control the system to follow two different figure of eight trajectories.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a shared autonomy control scheme for a quadcopter that is suited for inspection of vertical infrastructure — tall man-made structures such as streetlights, electricity poles or the exterior surfaces of buildings. Current approaches to inspection of such structures is slow, expensive, and potentially hazardous. Low-cost aerial platforms with an ability to hover now have sufficient payload and endurance for this kind of task, but require significant human skill to fly. We develop a control architecture that enables synergy between the ground-based operator and the aerial inspection robot. An unskilled operator is assisted by onboard sensing and partial autonomy to safely fly the robot in close proximity to the structure. The operator uses their domain knowledge and problem solving skills to guide the robot in difficult to reach locations to inspect and assess the condition of the infrastructure. The operator commands the robot in a local task coordinate frame with limited degrees of freedom (DOF). For instance: up/down, left/right, toward/away with respect to the infrastructure. We therefore avoid problems of global mapping and navigation while providing an intuitive interface to the operator. We describe algorithms for pole detection, robot velocity estimation with respect to the pole, and position estimation in 3D space as well as the control algorithms and overall system architecture. We present initial results of shared autonomy of a quadrotor with respect to a vertical pole and robot performance is evaluated by comparing with motion capture data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper details the progress to date, toward developing a small autonomous helicopter. We describe system architecture, avionics, visual state estimation, custom IMU design, aircraft modelling, as well as various linear and neuro/fuzzy control algorithms. Experimental results are presented for state estimation using fused stereo vision and IMU data, heading control, and attitude control. FAM attitude and velocity controllers have been shown to be effective in simulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The future emergence of many types of airborne vehicles and unpiloted aircraft in the national airspace means collision avoidance is of primary concern in an uncooperative airspace environment. The ability to replicate a pilot’s see and avoid capability using cameras coupled with vision based avoidance control is an important part of an overall collision avoidance strategy. But unfortunately without range collision avoidance has no direct way to guarantee a level of safety. Collision scenario flight tests with two aircraft and a monocular camera threat detection and tracking system were used to study the accuracy of image-derived angle measurements. The effect of image-derived angle errors on reactive vision-based avoidance performance was then studied by simulation. The results show that whilst large angle measurement errors can significantly affect minimum ranging characteristics across a variety of initial conditions and closing speeds, the minimum range is always bounded and a collision never occurs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

IEEE 802.11 based wireless local area networks (WLANs) are being increasingly deployed for soft real-time control applications. However, they do not provide quality-ofservice (QoS) differentiation to meet the requirements of periodic real-time traffic flows, a unique feature of real-time control systems. This problem becomes evident particularly when the network is under congested conditions. Addressing this problem, a media access control (MAC) scheme, QoS-dif, is proposed in this paper to enable QoS differentiation in IEEE 802.11 networks for different types of periodic real-time traffic flows. It extends the IEEE 802.11e Enhanced Distributed Channel Access (EDCA) by introducing a QoS differentiation method to deal with different types of periodic traffic that have different QoS requirements for real-time control applications. The effectiveness of the proposed QoS-dif scheme is demonstrated through comparisons with the IEEE 802.11e EDCA mechanism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The security of industrial control systems in critical infrastructure is a concern for the Australian government and other nations. There is a need to provide local Australian training and education for both control system engineers and information technology professionals. This paper proposes a postgraduate curriculum of four courses to provide knowledge and skills to protect critical infrastructure industrial control systems. Our curriculum is unique in that it provides security awareness but also the advanced skills required for security specialists in this area. We are aware that in the Australian context there is a cultural gap between the thinking of control system engineers who are responsible for maintaining and designing critical infrastructure and information technology professionals who are responsible for protecting these systems from cyber attacks. Our curriculum aims to bridge this gap by providing theoretical and practical exercises that will raise the awareness and preparedness of both groups of professionals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an Image Based Visual Servo control design for Fixed Wing Unmanned Aerial Vehicles tracking locally linear infrastructure in the presence of wind using a body fixed imaging sensor. Visual servoing offers improved data collection by posing the tracking task as one of controlling a feature as viewed by the inspection sensor, although is complicated by the introduction of wind as aircraft heading and course angle no longer align. In this work it is shown that the effects of wind alter the desired line angle required for continuous tracking to equal the wind correction angle as would be calculated to set a desired course. A control solution is then sort by linearizing the interaction matrix about the new feature pose such that kinematics of the feature can be augmented with the lateral dynamics of the aircraft, from which a state feedback control design is developed. Simulation results are presented comparing no compensation, integral control and the proposed controller using the wind correction angle, followed by an assessment of response to atmospheric disturbances in the form of turbulence and wind gusts

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work presents a collision avoidance approach based on omnidirectional cameras that does not require the estimation of range between two platforms to resolve a collision encounter. Our method achieves minimum separation between the two vehicles involved by maximising the view-angle given by the omnidirectional sensor. Only visual information is used to achieve avoidance under a bearing- only visual servoing approach. We provide theoretical problem formulation, as well as results from real flights using small quadrotors