256 resultados para Database, Image Retrieval, Browsing, Semantic Concept


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the issue of analogical inference, and its potential role as the mediator of new therapeutic discoveries, by using disjunction operators based on quantum connectives to combine many potential reasoning pathways into a single search expression. In it, we extend our previous work in which we developed an approach to analogical retrieval using the Predication-based Semantic Indexing (PSI) model, which encodes both concepts and the relationships between them in high-dimensional vector space. As in our previous work, we leverage the ability of PSI to infer predicate pathways connecting two example concepts, in this case comprising of known therapeutic relationships. For example, given that drug x TREATS disease z, we might infer the predicate pathway drug x INTERACTS WITH gene y ASSOCIATED WITH disease z, and use this pathway to search for drugs related to another disease in similar ways. As biological systems tend to be characterized by networks of relationships, we evaluate the ability of quantum-inspired operators to mediate inference and retrieval across multiple relations, by testing the ability of different approaches to recover known therapeutic relationships. In addition, we introduce a novel complex vector based implementation of PSI, based on Plate’s Circular Holographic Reduced Representations, which we utilize for all experiments in addition to the binary vector based approach we have applied in our previous research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Australian e-Health Research Centre and Queensland University of Technology recently participated in the TREC 2012 Medical Records Track. This paper reports on our methods, results and experience using an approach that exploits the concept and inter-concept relationships defined in the SNOMED CT medical ontology. Our concept-based approach is intended to overcome specific challenges in searching medical records, namely vocabulary mismatch and granularity mismatch. Queries and documents are transformed from their term-based originals into medical concepts as defined by the SNOMED CT ontology, this is done to tackle vocabulary mismatch. In addition, we make use of the SNOMED CT parent-child `is-a' relationships between concepts to weight documents that contained concept subsumed by the query concepts; this is done to tackle the problem of granularity mismatch. Finally, we experiment with other SNOMED CT relationships besides the is-a relationship to weight concepts related to query concepts. Results show our concept-based approach performed significantly above the median in all four performance metrics. Further improvements are achieved by the incorporation of weighting subsumed concepts, overall leading to improvement above the median of 28% infAP, 10% infNDCG, 12% R-prec and 7% Prec@10. The incorporation of other relations besides is-a demonstrated mixed results, more research is required to determined which SNOMED CT relationships are best employed when weighting related concepts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IT-supported field data management benefits on-site construction management by improving accessibility to the information and promoting efficient communication between project team members. However, most of on-site safety inspections still heavily rely on subjective judgment and manual reporting processes and thus observers’ experiences often determine the quality of risk identification and control. This study aims to develop a methodology to efficiently retrieve safety-related information so that the safety inspectors can easily access to the relevant site safety information for safer decision making. The proposed methodology consists of three stages: (1) development of a comprehensive safety database which contains information of risk factors, accident types, impact of accidents and safety regulations; (2) identification of relationships among different risk factors based on statistical analysis methods; and (3) user-specified information retrieval using data mining techniques for safety management. This paper presents an overall methodology and preliminary results of the first stage research conducted with 101 accident investigation reports.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Entity-oriented search has become an essential component of modern search engines. It focuses on retrieving a list of entities or information about the specific entities instead of documents. In this paper, we study the problem of finding entity related information, referred to as attribute-value pairs, that play a significant role in searching target entities. We propose a novel decomposition framework combining reduced relations and the discriminative model, Conditional Random Field (CRF), for automatically finding entity-related attribute-value pairs from free text documents. This decomposition framework allows us to locate potential text fragments and identify the hidden semantics, in the form of attribute-value pairs for user queries. Empirical analysis shows that the decomposition framework outperforms pattern-based approaches due to its capability of effective integration of syntactic and semantic features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free association norms indicate that words are organized into semantic/associative neighborhoods within a larger network of words and links that bind the net together. We present evidence indicating that memory for a recent word event can depend on implicitly and simultaneously activating related words in its neighborhood. Processing a word during encoding primes its network representation as a function of the density of the links in its neighborhood. Such priming increases recall and recognition and can have long lasting effects when the word is processed in working memory. Evidence for this phenomenon is reviewed in extralist cuing, primed free association, intralist cuing, and single-item recognition tasks. The findings also show that when a related word is presented to cue the recall of a studied word, the cue activates it in an array of related words that distract and reduce the probability of its selection. The activation of the semantic network produces priming benefits during encoding and search costs during retrieval. In extralist cuing recall is a negative function of cue-to-distracter strength and a positive function of neighborhood density, cue-to-target strength, and target-to cue strength. We show how four measures derived from the network can be combined and used to predict memory performance. These measures play different roles in different tasks indicating that the contribution of the semantic network varies with the context provided by the task. We evaluate spreading activation and quantum-like entanglement explanations for the priming effect produced by neighborhood density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the development of XML and other data models such as OWL and RDF, sharing data is an increasingly common task since these data models allow simple syntactic translation of data between applications. However, in order for data to be shared semantically, there must be a way to ensure that concepts are the same. One approach is to employ commonly usedschemas—called standard schemas —which help guarantee that syntactically identical objects have semantically similar meanings. As a result of the spread of data sharing, there has been widespread adoption of standard schemas in a broad range of disciplines and for a wide variety of applications within a very short period of time. However, standard schemas are still in their infancy and have not yet matured or been thoroughly evaluated. It is imperative that the data management research community takes a closer look at how well these standard schemas have fared in real-world applications to identify not only their advantages, but also the operational challenges that real users face. In this paper, we both examine the usability of standard schemas in a comparison that spans multiple disciplines, and describe our first step at resolving some of these issues in our Semantic Modeling System. We evaluate our Semantic Modeling System through a careful case study of the use of standard schemas in architecture, engineering, and construction, which we conducted with domain experts. We discuss how our Semantic Modeling System can help the broader problem and also discuss a number of challenges that still remain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the explosive growth of resources available through the Internet, information mismatching and overload have become a severe concern to users. Web users are commonly overwhelmed by huge volume of information and are faced with the challenge of finding the most relevant and reliable information in a timely manner. Personalised information gathering and recommender systems represent state-of-the-art tools for efficient selection of the most relevant and reliable information resources, and the interest in such systems has increased dramatically over the last few years. However, web personalization has not yet been well-exploited; difficulties arise while selecting resources through recommender systems from a technological and social perspective. Aiming to promote high quality research in order to overcome these challenges, this paper provides a comprehensive survey on the recent work and achievements in the areas of personalised web information gathering and recommender systems. The report covers concept-based techniques exploited in personalised information gathering and recommender systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Total Dik! is a collaborative project between the Queensland University of Technology (QUT) and Queensland Theatre Company (QTC). Total Dik! explores transmedia storytelling in live performance from concept development to delivery and builds on works, By the Way, Meet Vera Stark, (Forrester2012), Hotel Modern’s Kamp (2005) and God’s Beard (2012) that use visual art, puppetry, music and film. The project’s first iteration enabled an interrogation of the integration of media-rich elements with live performers in a theatrical environment. Performative transmedia storytelling draws on the tenets of convergent media theory developed by Jenkins (2007, 2012), Dena (2010) and Philips (2012). This exploratory work, juxtaposing transmedia storytelling techniques with live performance, draws on Samuel Becket’s challenges to theatre orthodoxy, and touches on Brechtian notions of alienation through ‘sleight-of-hand’ or processual unpacking and deconstruction during performance. Total Dik! blends a convergence of technologies, models, green screen capture, and live dimensions of performance in one narrative allowing the work’s creators to test new combinations of transmedia storytelling techniques on a traditional performance platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project was a step forward in developing and evaluating a novel, mathematical model that can deduce the meaning of words based on their use in language. This model can be applied to a wide range of natural language applications, including the information seeking process most of us undertake on a daily basis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Database security techniques are available widely. Among those techniques, the encryption method is a well-certified and established technology for protecting sensitive data. However, once encrypted, the data can no longer be easily queried. The performance of the database depends on how to encrypt the sensitive data, and an approach for searching and retrieval efficiencies that are implemented. In this paper we analyze the database queries and the data properties and propose a suitable mechanism to query the encrypted database. We proposed and analyzed the new database encryption algorithm using the Bloom Filter with the bucket index method. Finally, we demonstrated the superiority of the proposed algorithm through several experiments that should be useful for database encryption related research and application activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robust hashing is an emerging field that can be used to hash certain data types in applications unsuitable for traditional cryptographic hashing methods. Traditional hashing functions have been used extensively for data/message integrity, data/message authentication, efficient file identification and password verification. These applications are possible because the hashing process is compressive, allowing for efficient comparisons in the hash domain but non-invertible meaning hashes can be used without revealing the original data. These techniques were developed with deterministic (non-changing) inputs such as files and passwords. For such data types a 1-bit or one character change can be significant, as a result the hashing process is sensitive to any change in the input. Unfortunately, there are certain applications where input data are not perfectly deterministic and minor changes cannot be avoided. Digital images and biometric features are two types of data where such changes exist but do not alter the meaning or appearance of the input. For such data types cryptographic hash functions cannot be usefully applied. In light of this, robust hashing has been developed as an alternative to cryptographic hashing and is designed to be robust to minor changes in the input. Although similar in name, robust hashing is fundamentally different from cryptographic hashing. Current robust hashing techniques are not based on cryptographic methods, but instead on pattern recognition techniques. Modern robust hashing algorithms consist of feature extraction followed by a randomization stage that introduces non-invertibility and compression, followed by quantization and binary encoding to produce a binary hash output. In order to preserve robustness of the extracted features, most randomization methods are linear and this is detrimental to the security aspects required of hash functions. Furthermore, the quantization and encoding stages used to binarize real-valued features requires the learning of appropriate quantization thresholds. How these thresholds are learnt has an important effect on hashing accuracy and the mere presence of such thresholds are a source of information leakage that can reduce hashing security. This dissertation outlines a systematic investigation of the quantization and encoding stages of robust hash functions. While existing literature has focused on the importance of quantization scheme, this research is the first to emphasise the importance of the quantizer training on both hashing accuracy and hashing security. The quantizer training process is presented in a statistical framework which allows a theoretical analysis of the effects of quantizer training on hashing performance. This is experimentally verified using a number of baseline robust image hashing algorithms over a large database of real world images. This dissertation also proposes a new randomization method for robust image hashing based on Higher Order Spectra (HOS) and Radon projections. The method is non-linear and this is an essential requirement for non-invertibility. The method is also designed to produce features more suited for quantization and encoding. The system can operate without the need for quantizer training, is more easily encoded and displays improved hashing performance when compared to existing robust image hashing algorithms. The dissertation also shows how the HOS method can be adapted to work with biometric features obtained from 2D and 3D face images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a method to generate a large scale and accurate dense 3D semantic map of street scenes. A dense 3D semantic model of the environment can significantly improve a number of robotic applications such as autonomous driving, navigation or localisation. Instead of using offline trained classifiers for semantic segmentation, our approach employs a data-driven, nonparametric method to parse scenes which easily scale to a large environment and generalise to different scenes. We use stereo image pairs collected from cameras mounted on a moving car to produce dense depth maps which are combined into a global 3D reconstruction using camera poses from stereo visual odometry. Simultaneously, 2D automatic semantic segmentation using a nonparametric scene parsing method is fused into the 3D model. Furthermore, the resultant 3D semantic model is improved with the consideration of moving objects in the scene. We demonstrate our method on the publicly available KITTI dataset and evaluate the performance against manually generated ground truth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Big Data is a rising IT trend similar to cloud computing, social networking or ubiquitous computing. Big Data can offer beneficial scenarios in the e-health arena. However, one of the scenarios can be that Big Data needs to be kept secured for a long period of time in order to gain its benefits such as finding cures for infectious diseases and protecting patient privacy. From this connection, it is beneficial to analyse Big Data to make meaningful information while the data is stored securely. Therefore, the analysis of various database encryption techniques is essential. In this study, we simulated 3 types of technical environments, namely, Plain-text, Microsoft Built-in Encryption, and custom Advanced Encryption Standard, using Bucket Index in Data-as-a-Service. The results showed that custom AES-DaaS has a faster range query response time than MS built-in encryption. Furthermore, while carrying out the scalability test, we acknowledged that there are performance thresholds depending on physical IT resources. Therefore, for the purpose of efficient Big Data management in eHealth it is noteworthy to examine their scalability limits as well even if it is under a cloud computing environment. In addition, when designing an e-health database, both patient privacy and system performance needs to be dealt as top priorities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decade, the majority of existing search techniques is either keyword- based or category-based, resulting in unsatisfactory effectiveness. Meanwhile, studies have illustrated that more than 80% of users preferred personalized search results. As a result, many studies paid a great deal of efforts (referred to as col- laborative filtering) investigating on personalized notions for enhancing retrieval performance. One of the fundamental yet most challenging steps is to capture precise user information needs. Most Web users are inexperienced or lack the capability to express their needs properly, whereas the existent retrieval systems are highly sensitive to vocabulary. Researchers have increasingly proposed the utilization of ontology-based tech- niques to improve current mining approaches. The related techniques are not only able to refine search intentions among specific generic domains, but also to access new knowledge by tracking semantic relations. In recent years, some researchers have attempted to build ontological user profiles according to discovered user background knowledge. The knowledge is considered to be both global and lo- cal analyses, which aim to produce tailored ontologies by a group of concepts. However, a key problem here that has not been addressed is: how to accurately match diverse local information to universal global knowledge. This research conducts a theoretical study on the use of personalized ontolo- gies to enhance text mining performance. The objective is to understand user information needs by a \bag-of-concepts" rather than \words". The concepts are gathered from a general world knowledge base named the Library of Congress Subject Headings. To return desirable search results, a novel ontology-based mining approach is introduced to discover accurate search intentions and learn personalized ontologies as user profiles. The approach can not only pinpoint users' individual intentions in a rough hierarchical structure, but can also in- terpret their needs by a set of acknowledged concepts. Along with global and local analyses, another solid concept matching approach is carried out to address about the mismatch between local information and world knowledge. Relevance features produced by the Relevance Feature Discovery model, are determined as representatives of local information. These features have been proven as the best alternative for user queries to avoid ambiguity and consistently outperform the features extracted by other filtering models. The two attempt-to-proposed ap- proaches are both evaluated by a scientific evaluation with the standard Reuters Corpus Volume 1 testing set. A comprehensive comparison is made with a num- ber of the state-of-the art baseline models, including TF-IDF, Rocchio, Okapi BM25, the deploying Pattern Taxonomy Model, and an ontology-based model. The gathered results indicate that the top precision can be improved remarkably with the proposed ontology mining approach, where the matching approach is successful and achieves significant improvements in most information filtering measurements. This research contributes to the fields of ontological filtering, user profiling, and knowledge representation. The related outputs are critical when systems are expected to return proper mining results and provide personalized services. The scientific findings have the potential to facilitate the design of advanced preference mining models, where impact on people's daily lives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clustering identities in a broadcast video is a useful task to aid in video annotation and retrieval. Quality based frame selection is a crucial task in video face clustering, to both improve the clustering performance and reduce the computational cost. We present a frame work that selects the highest quality frames available in a video to cluster the face. This frame selection technique is based on low level and high level features (face symmetry, sharpness, contrast and brightness) to select the highest quality facial images available in a face sequence for clustering. We also consider the temporal distribution of the faces to ensure that selected faces are taken at times distributed throughout the sequence. Normalized feature scores are fused and frames with high quality scores are used in a Local Gabor Binary Pattern Histogram Sequence based face clustering system. We present a news video database to evaluate the clustering system performance. Experiments on the newly created news database show that the proposed method selects the best quality face images in the video sequence, resulting in improved clustering performance.