129 resultados para Data Streams Distribution
Resumo:
Natural distributions of most freshwater taxa are restricted geographically, a pattern that reflects dispersal limitation. Macrobrachium rosenbergii is unusual because it occurs naturally in rivers from near Pakistan in the west, across India and Bangladesh to the Malay Peninsula, and across the Sunda Shelf and Indonesian archipelago to western Java. Individuals cannot tolerate full marine conditions, so dispersal between river drainage basins must occur at limited geographical scales when ecological or climatic factors are favorable. We examined molecular diversity in wild populations of M. rosenbergii across its complete natural range to document patterns of diversity and to relate them to factors that have driven evolution of diversity in this species. We found 3 clades in the mitochondrial deoxyribonucleic acid (mtDNA) data set that corresponded geographically with eastern, central, and western sets of haplotypes that last shared a common ancestor 1 × 106 y ago. The eastern clade was closest to the common ancestor of all 3 clades and to the common ancestor with its congener, Macrobrachium spinipes, distributed east of Huxley's Line. Macrobrachium rosenbergii could have evolved in the western Indonesian archipelago and spread westward during the early to mid-Pleistocene to India and Sri Lanka. Additional groups identified in the nuclear DNA data set in the central and western clades probably indicate secondary contact via dispersal between regions and modern introductions that have mixed nuclear and mtDNA genes. Pleistocene sea-level fluctuations can explain dispersal across the Indonesian archipelago and parts of mainland southeastern Asia via changing river drainage connections in shallow seas on wide continental shelves. At the western end of the modern distribution where continental shelves are smaller, intermittent freshwater plumes from large rivers probably permitted larval dispersal across inshore areas of lowered salinity.
Resumo:
Accurate prediction of incident duration is not only important information of Traffic Incident Management System, but also an ffective input for travel time prediction. In this paper, the hazard based prediction odels are developed for both incident clearance time and arrival time. The data are obtained from the Queensland Department of Transport and Main Roads’ STREAMS Incident Management System (SIMS) for one year ending in November 2010. The best fitting distributions are drawn for both clearance and arrival time for 3 types of incident: crash, stationary vehicle, and hazard. The results show that Gamma, Log-logistic, and Weibull are the best fit for crash, stationary vehicle, and hazard incident, respectively. The obvious impact factors are given for crash clearance time and arrival time. The quantitative influences for crash and hazard incident are presented for both clearance and arrival. The model accuracy is analyzed at the end.
Resumo:
Human infection with a novel low pathogenicity influenza A(H7N9) virus in eastern China has recently raised global public health concerns (1). The geographic sources of infection have yet to be fully clarified, and confirmed human cases from 1 province have not been linked to those from other provinces. While some studies have identified epidemiologic characteristics of subtype H7N9 cases and clinical differences between these cases and cases of highly pathogenic influenza A(H5N1), another avian influenza affecting parts of China (2–4), the spatial epidemiology of human infection with influenza subtypes H7N9 and H5N1 in China has yet to be elucidated. To test the hypothesis of co-distribution of high-risk clusters of both types of infection, we used all available data on human cases in mainland China and investigated the geospatial epidemiologic features...
Resumo:
A measure quantifying unequal use of carbon sources, the Gini coefficient (G), has been developed to allow comparisons of the observed functional diversity of bacterial soil communities. This approach was applied to the analysis of substrate utilisation data obtained from using BIOLOG microtiter plates in a study which compared decomposition processes in two contrasting plant substrates in two different soils. The relevance of applying the Gini coefficient as a measure of observed functional diversity, for soil bacterial communities is evaluated against the Shannon index (H) and average well colour development (AWCD), a measure of the total microbial activity. Correlation analysis and analysis of variance of the experimental data show that the Gini coefficient, the Shannon index and AWCD provided similar information when used in isolation. However, analyses based on the Gini coefficient and the Shannon index, when total activity on the microtiter plates was maintained constant (i.e. AWCD as a covariate), indicate that additional information about the distribution of carbon sources being utilised can be obtained. We demonstrate that the Lorenz curve and its measure of inequality, the Gini coefficient, provides not only comparable information to AWCD and the Shannon index but when used together with AWCD encompasses measures of total microbial activity and absorbance inequality across all the carbon sources. This information is especially relevant for comparing the observed functional diversity of soil microbial communities.
Resumo:
In studies using macroinvertebrates as indicators for monitoring rivers and streams, species level identifications in comparison with lower resolution identifications can have greater information content and result in more reliable site classifications and better capacity to discriminate between sites, yet many such programmes identify specimens to the resolution of family rather than species. This is often because it is cheaper to obtain family level data than species level data. Choice of appropriate taxonomic resolution is a compromise between the cost of obtaining data at high taxonomic resolutions and the loss of information at lower resolutions. Optimum taxonomic resolution should be determined by the information required to address programme objectives. Costs saved in identifying macroinvertebrates to family level may not be justified if family level data can not give the answers required and expending the extra cost to obtain species level data may not be warranted if cheaper family level data retains sufficient information to meet objectives. We investigated the influence of taxonomic resolution and sample quantification (abundance vs. presence/absence) on the representation of aquatic macroinvertebrate species assemblage patterns and species richness estimates. The study was conducted in a physically harsh dryland river system (Condamine-Balonne River system, located in south-western Queensland, Australia), characterised by low macroinvertebrate diversity. Our 29 study sites covered a wide geographic range and a diversity of lotic conditions and this was reflected by differences between sites in macroinvertebrate assemblage composition and richness. The usefulness of expending the extra cost necessary to identify macroinvertebrates to species was quantified via the benefits this higher resolution data offered in its capacity to discriminate between sites and give accurate estimates of site species richness. We found that very little information (<6%) was lost by identifying taxa to family (or genus), as opposed to species, and that quantifying the abundance of taxa provided greater resolution for pattern interpretation than simply noting their presence/absence. Species richness was very well represented by genus, family and order richness, so that each of these could be used as surrogates of species richness if, for example, surveying to identify diversity hot-spots. It is suggested that sharing of common ecological responses among species within higher taxonomic units is the most plausible mechanism for the results. Based on a cost/benefit analysis, family level abundance data is recommended as the best resolution for resolving patterns in macroinvertebrate assemblages in this system. The relevance of these findings are discussed in the context of other low diversity, harsh, dryland river systems.
Resumo:
Background Detection of outbreaks is an important part of disease surveillance. Although many algorithms have been designed for detecting outbreaks, few have been specifically assessed against diseases that have distinct seasonal incidence patterns, such as those caused by vector-borne pathogens. Methods We applied five previously reported outbreak detection algorithms to Ross River virus (RRV) disease data (1991-2007) for the four local government areas (LGAs) of Brisbane, Emerald, Redland and Townsville in Queensland, Australia. The methods used were the Early Aberration Reporting System (EARS) C1, C2 and C3 methods, negative binomial cusum (NBC), historical limits method (HLM), Poisson outbreak detection (POD) method and the purely temporal SaTScan analysis. Seasonally-adjusted variants of the NBC and SaTScan methods were developed. Some of the algorithms were applied using a range of parameter values, resulting in 17 variants of the five algorithms. Results The 9,188 RRV disease notifications that occurred in the four selected regions over the study period showed marked seasonality, which adversely affected the performance of some of the outbreak detection algorithms. Most of the methods examined were able to detect the same major events. The exception was the seasonally-adjusted NBC methods that detected an excess of short signals. The NBC, POD and temporal SaTScan algorithms were the only methods that consistently had high true positive rates and low false positive and false negative rates across the four study areas. The timeliness of outbreak signals generated by each method was also compared but there was no consistency across outbreaks and LGAs. Conclusions This study has highlighted several issues associated with applying outbreak detection algorithms to seasonal disease data. In lieu of a true gold standard, a quantitative comparison is difficult and caution should be taken when interpreting the true positives, false positives, sensitivity and specificity.
Resumo:
S. japonicum infection is believed to be endemic in 28 of the 80 provinces of the Philippines and the most recent data on schistosomiasis prevalence have shown considerable variability between provinces. In order to increase the efficient allocation of parasitic disease control resources in the country, we aimed to describe the small scale spatial variation in S. japonicum prevalence across the Philippines, quantify the role of the physical environment in driving the spatial variation of S. japonicum, and develop a predictive risk map of S. japonicum infection. Data on S. japonicum infection from 35,754 individuals across the country were geo-located at the barangay level and included in the analysis. The analysis was then stratified geographically for Luzon, the Visayas and Mindanao. Zero-inflated binomial Bayesian geostatistical models of S. japonicum prevalence were developed and diagnostic uncertainty was incorporated. Results of the analysis show that in the three regions, males and individuals aged ≥ 20 years had significantly higher prevalence of S. japonicum compared with females and children <5 years. The role of the environmental variables differed between regions of the Philippines. S. japonicum infection was widespread in the Visayas whereas it was much more focal in Luzon and Mindanao. This analysis revealed significant spatial variation in prevalence of S. japonicum infection in the Philippines. This suggests that a spatially targeted approach to schistosomiasis interventions, including mass drug administration, is warranted. When financially possible, additional schistosomiasis surveys should be prioritized to areas identified to be at high risk, but which were underrepresented in our dataset.
Resumo:
Background Small RNA sequencing is commonly used to identify novel miRNAs and to determine their expression levels in plants. There are several miRNA identification tools for animals such as miRDeep, miRDeep2 and miRDeep*. miRDeep-P was developed to identify plant miRNA using miRDeep’s probabilistic model of miRNA biogenesis, but it depends on several third party tools and lacks a user-friendly interface. The objective of our miRPlant program is to predict novel plant miRNA, while providing a user-friendly interface with improved accuracy of prediction. Result We have developed a user-friendly plant miRNA prediction tool called miRPlant. We show using 16 plant miRNA datasets from four different plant species that miRPlant has at least a 10% improvement in accuracy compared to miRDeep-P, which is the most popular plant miRNA prediction tool. Furthermore, miRPlant uses a Graphical User Interface for data input and output, and identified miRNA are shown with all RNAseq reads in a hairpin diagram. Conclusions We have developed miRPlant which extends miRDeep* to various plant species by adopting suitable strategies to identify hairpin excision regions and hairpin structure filtering for plants. miRPlant does not require any third party tools such as mapping or RNA secondary structure prediction tools. miRPlant is also the first plant miRNA prediction tool that dynamically plots miRNA hairpin structure with small reads for identified novel miRNAs. This feature will enable biologists to visualize novel pre-miRNA structure and the location of small RNA reads relative to the hairpin. Moreover, miRPlant can be easily used by biologists with limited bioinformatics skills.
Resumo:
Genetically diverse RNA viruses like dengue viruses (DENVs)segregate into multiple, genetically distinct, lineages that temporally arise and disappear on a regular basis. Lineage turnover may occur through multiple processes such as, stochastic or due to variations in fitness. To determine the variation of fitness, we measured the distribution of fitness within DENV populations and correlated it with lineage extinction and replacement. The fitness of most members within a population proved lower than the aggregate fitness of populations from which they were drawn, but lineage replacement events were not associated with changes in the distribution of fitness. These data provide insights into variations in fitness of DENV populations, extending our understanding of the complexity between members of individual populations.
Resumo:
Background The ghrelin axis is involved in the regulation of metabolism, energy balance, and the immune, cardiovascular and reproductive systems. The manipulation of this axis has potential for improving economically valuable traits in production animals, and polymorphisms in the ghrelin (GHRL) and ghrelin receptor (GHSR) genes have been associated with growth and carcass traits. Here we investigate the structure and expression of the ghrelin gene (GHRL) in sheep, Ovis aries. Results We identify two ghrelin mRNA isoforms, which we have designated Δex2 preproghrelin and Δex2,3 preproghrelin. Expression of Δex2,3 preproghrelin is likely to be restricted to ruminants, and would encode truncated ghrelin and a novel C-terminal peptide. Both Δex2 preproghrelin and canonical preproghrelin mRNA isoforms were expressed in a range of tissues. Expression of the Δex2,3 preproghrelin isoform, however, was restricted to white blood cells (WBC; where the wild-type preproghrelin isoform is not co-expressed), and gastrointestinal tissues. Expression of Δex2 preproghrelin and Δex2,3 preproghrelin mRNA was elevated in white blood cells in response to parasitic worm (helminth) infection in genetically susceptible sheep, but not in resistant sheep. Conclusions The restricted expression of the novel preproghrelin variants and their distinct WBC expression pattern during parasite infection may indicate a novel link between the ghrelin axis and metabolic and immune function in ruminants.
Resumo:
Seeking new biomarkers for epithelial ovarian cancer, the fifth most common cause of death from all cancers in women and the leading cause of death from gynaecological malignancies, we performed a meta-analysis of three independent studies and compared the results in regard to clinicopathological parameters. This analysis revealed that GAS6 was highly expressed in ovarian cancer and therefore was selected as our candidate of choice. GAS6 encodes a secreted protein involved in physiological processes including cell proliferation, chemotaxis, and cell survival. We performed immunohistochemistry on various ovarian cancer tissues and found that GAS6 expression was elevated in tumour tissue samples compared to healthy control samples (P < 0.0001). In addition, GAS6 expression was also higher in tumours from patients with residual disease compared to those without. Our data propose GAS6 as an independent predictor of poor survival, suggesting GAS6, both on the mRNA and on the protein level, as a potential biomarker for ovarian cancer. In clinical practice, the staining of a tumour biopsy for GAS6 may be useful to assess cancer prognosis and/or to monitor disease progression.
Resumo:
Forty-six archaeological specimens were treated by fire-assay and subsequently analysed by ICP-MS for selected precious metals: Ph, Pt and Au. The investigation was prompted by the possibility that archaeological samples could serve as "indicators" of the precious metal composition of the clays from the excavated sites. Therefore, the experimentally obtained concentrations were carefully studied to determine if there were anomalous levels of these precious metals in the deposits from which the specimens originated. Furthermore, the analytical data were used to establish if it was feasible to distinguish ancient potsherds based on precious metal concentrations, for employment as a basis in provenance studies.
Resumo:
Interpolation techniques for spatial data have been applied frequently in various fields of geosciences. Although most conventional interpolation methods assume that it is sufficient to use first- and second-order statistics to characterize random fields, researchers have now realized that these methods cannot always provide reliable interpolation results, since geological and environmental phenomena tend to be very complex, presenting non-Gaussian distribution and/or non-linear inter-variable relationship. This paper proposes a new approach to the interpolation of spatial data, which can be applied with great flexibility. Suitable cross-variable higher-order spatial statistics are developed to measure the spatial relationship between the random variable at an unsampled location and those in its neighbourhood. Given the computed cross-variable higher-order spatial statistics, the conditional probability density function (CPDF) is approximated via polynomial expansions, which is then utilized to determine the interpolated value at the unsampled location as an expectation. In addition, the uncertainty associated with the interpolation is quantified by constructing prediction intervals of interpolated values. The proposed method is applied to a mineral deposit dataset, and the results demonstrate that it outperforms kriging methods in uncertainty quantification. The introduction of the cross-variable higher-order spatial statistics noticeably improves the quality of the interpolation since it enriches the information that can be extracted from the observed data, and this benefit is substantial when working with data that are sparse or have non-trivial dependence structures.
Resumo:
The Hauraki Gulf is a large, shallow embayment located north of Auckland City (36°51′S, 174°46′E), New Zealand. Bryde's whales (Balaenoptera edeni) are the most frequently observed balaenopterid in these waters. To assess the use of the Hauraki Gulf for this species, we examined the occurrence and distribution in relation to environmental parameters. Data were collected from a platform of opportunity during 674 daily surveys between March 2003 and February 2006. A total of 760 observations of Bryde's whales were recorded throughout the study period during 371 surveys. The number of Bryde's whales sighted/day was highest in winter, coinciding with the coolest median sea-surface temperature (14.6°C). Bryde's whales were recorded throughout the Hauraki Gulf in water depths ranging from 12.1–59.8 m (mean = 42.3, SD = 5.1). Cow–calf pairs were most frequently observed during the austral autumn in water depths of 29.9–53.9 m (mean = 40.8, SD = 5.2). Data from this study suggest Bryde's whales in the Hauraki Gulf exhibit a mix of both “inshore” and “offshore” characteristics from the Bryde's whales examined off the coast of South Africa. Based on complete mitochondrial DNA sequences, Sasaki et al. (2006) recognized two sister species of Bryde's whales: Balaenoptera brydei and B. edeni, with the latter including small-type, more coastal Bryde's whales from Japan, Hong Kong, and Australia. Their samples and samples in previous analyses of small-type whales, all originated from eastern and southeastern Asia. These authors did not include the forms of Bryde's whales that occur in other regions, e.g., in the Pacific off Peru (Valdivia et al. 1981), in the Atlantic off Brazil (Best 1977) and in the western Indian Ocean off South Africa (Best 1977). Recent genetic analysis using mtDNA from the “inshore” and “offshore” forms from South Africa confirms the offshore form is B. brydei, and establishes that the inshore form is more closely related to B. brydei than to B. edeni (Penry 2010). These different forms do vary considerably in their habitat use and ecology (refer to Table 1 for a detailed comparison between the South African inshore and offshore forms, as described by Best (1967, 1977) and the Bryde's whales from New Zealand (Wiseman 2008). Recent genetic analysis on the Bryde's whales in the Hauraki Gulf suggests they are B. brydei (Wiseman 2008). However, pending resolution of the uncertainty within and between species of this genus, we follow the Society of Marine Mammal's committee on taxonomy, who state that B. edeni applies to all Bryde's whales.