327 resultados para Data Accuracy
Resumo:
Purpose – Preliminary cost estimates for construction projects are often the basis of financial feasibility and budgeting decisions in the early stages of planning and for effective project control, monitoring and execution. The purpose of this paper is to identify and better understand the cost drivers and factors that contribute to the accuracy of estimates in residential construction projects from the developers’ perspective. Design/methodology/approach – The paper uses a literature review to determine the drivers that affect the accuracy of developers’ early stage cost estimates and the factors influencing the construction costs of residential construction projects. It used cost variance data and other supporting documentation collected from two case study projects in South East Queensland, Australia, along with semi-structured interviews conducted with the practitioners involved. Findings – It is found that many cost drivers or factors of cost uncertainty identified in the literature for large-scale projects are not as apparent and relevant for developers’ small-scale residential construction projects. Specifically, the certainty and completeness of project-specific information, suitability of historical cost data, contingency allowances, methods of estimating and the estimator’s level of experience significantly affect the accuracy of cost estimates. Developers of small-scale residential projects use pre-established and suitably priced bills of quantities as the prime estimating method, which is considered to be the most efficient and accurate method for standard house designs. However, this method needs to be backed with the expertise and experience of the estimator. Originality/value – There is a lack of research on the accuracy of developers’ early stage cost estimates and the relevance and applicability of cost drivers and factors in the residential construction projects. This research has practical significance for improving the accuracy of such preliminary cost estimates.
Resumo:
A central tenet in the theory of reliability modelling is the quantification of the probability of asset failure. In general, reliability depends on asset age and the maintenance policy applied. Usually, failure and maintenance times are the primary inputs to reliability models. However, for many organisations, different aspects of these data are often recorded in different databases (e.g. work order notifications, event logs, condition monitoring data, and process control data). These recorded data cannot be interpreted individually, since they typically do not have all the information necessary to ascertain failure and preventive maintenance times. This paper presents a methodology for the extraction of failure and preventive maintenance times using commonly-available, real-world data sources. A text-mining approach is employed to extract keywords indicative of the source of the maintenance event. Using these keywords, a Naïve Bayes classifier is then applied to attribute each machine stoppage to one of two classes: failure or preventive. The accuracy of the algorithm is assessed and the classified failure time data are then presented. The applicability of the methodology is demonstrated on a maintenance data set from an Australian electricity company.
Resumo:
Recent data indicate that levels of overweight and obesity are increasing at an alarming rate throughout the world. At a population level (and commonly to assess individual health risk), the prevalence of overweight and obesity is calculated using cut-offs of the Body Mass Index (BMI) derived from height and weight. Similarly, the BMI is also used to classify individuals and to provide a notional indication of potential health risk. It is likely that epidemiologic surveys that are reliant on BMI as a measure of adiposity will overestimate the number of individuals in the overweight (and slightly obese) categories. This tendency to misclassify individuals may be more pronounced in athletic populations or groups in which the proportion of more active individuals is higher. This differential is most pronounced in sports where it is advantageous to have a high BMI (but not necessarily high fatness). To illustrate this point we calculated the BMIs of international professional rugby players from the four teams involved in the semi-finals of the 2003 Rugby Union World Cup. According to the World Health Organisation (WHO) cut-offs for BMI, approximately 65% of the players were classified as overweight and approximately 25% as obese. These findings demonstrate that a high BMI is commonplace (and a potentially desirable attribute for sport performance) in professional rugby players. An unanswered question is what proportion of the wider population, classified as overweight (or obese) according to the BMI, is misclassified according to both fatness and health risk? It is evident that being overweight should not be an obstacle to a physically active lifestyle. Similarly, a reliance on BMI alone may misclassify a number of individuals who might otherwise have been automatically considered fat and/or unfit.
Resumo:
In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.