543 resultados para Control framework


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a framework for joint allocation and constrained control design of flight controllers for Unmanned Aircraft Systems (UAS). The actuator configuration is used to map actuator constraint set into the space of the aircraft generalised forces. By constraining the demanded generalised forces, we ensure that the allocation problem is always feasible; and therefore, it can be solved without constraints. This leads to an allocation problem that does not require on-line numerical optimisation. Furthermore, since the controller handles the constraints, and there is no need to implement heuristics to inform the controller about actuator saturation. The latter is fundamental for avoiding Pilot Induced Oscillations (PIO) in remotely operated UAS due to the rate limit on the aircraft control surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the number of Uninhabited Airborne Systems (UAS) proliferates in civil applications, industry is increasingly putting pressure on regulation authorities to provide a path for certification and allow UAS integration into regulated airspace. The success of this integration depends on developments in improved UAS reliability and safety, regulations for certification, and technologies for operational performance and safety assessment. This paper focusses on the last topic and describes a framework for quantifying robust autonomy of UAS, which quantifies the system's ability to either continue operating in the presence of faults or safely shut down. Two figures of merit are used to evaluate vehicle performance relative to mission requirements and the consequences of autonomous decision making in motion control and guidance systems. These figures of merit are interpreted within a probabilistic framework, which extends previous work in the literature. The valuation of the figures of merit can be done using stochastic simulation scenarios during both vehicle development and certification stages with different degrees of integration of hardware-in-the-loop simulation technology. The objective of the proposed framework is to aid in decision making about the suitability of a vehicle with respect to safety and reliability relative to mission requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As Unmanned Aircraft Systems (UAS) grow in complexity, and their level of autonomy increases|moving away from the concept of a remotely piloted systems and more towards autonomous systems|there is a need to further improve reliability and tolerance to faults. The traditional way to accommodate actuator faults is by using standard control allocation techniques as part of the flight control system. The allocation problem in the presence of faults often requires adding constraints that quantify the maximum capacity of the actuators. This in turn requires on-line numerical optimisation. In this paper, we propose a framework for joint allocation and constrained control scheme via vector input scaling. The actuator configuration is used to map actuator constraints into the space of the aircraft generalised forces, which are the magnitudes demanded by the light controller. Then by constraining the output of controller, we ensure that the allocation function always receive feasible demands. With the proposed framework, the allocation problem does not require numerical optimisation, and since the controller handles the constraints, there is not need to implement heuristics to inform the controller about actuator saturation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2009, BJSM's first editorial argued that ‘Physical inactivity is the greatest public health problem of the 21st century’.1 The data supporting that claim have not yet been challenged. Now, 5 years after BJSM published its first dedicated ‘Physical Activity is Medicine’ theme issue (http://bjsm.bmj.com/content/43/1.toc) we are pleased to highlight 23 new contributions from six countries. This issue contains an analysis of the cost of physical inactivity from the US Centre for Diseases Control.2 We also report the cost-effectiveness of one particular physical activity intervention for adults.3

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a framework for the design of a joint motion controller and a control allocation strategy for dynamic positioning of marine vehicles. The key aspects of the proposed designs are a systematic approach to deal with actuator saturation and to inform the motion controller about saturation. The proposed system uses a mapping that translates the actuator constraint sets into constraint sets at the motion controller level. Hence, while the motion controller addresses the constraints, the control allocation algorithm can solve an unconstrained optimisation problem. The constrained control design is approached using a multivariable anti-wind-up strategy for strictly proper controllers. This is applicable to the implementation of PI and PID type of motion controllers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Management of project knowledge is a critical factor for project success. Project Management Office (PMO) is a unit within organisations to centrally facilitate, manage and control organisational project for improving the rate of project success. Due to increasing interest of developing PMO, the Project Management Maturity Model (PMMM) has been proposed to develop PMOs gradually. The PMMM contributes to evolvement of PMO from immature to mature level through addressing appropriate PM practices. Despite the importance of project knowledge, it has not been extensively investigated in project environments. In addition, the existing PMMMs not only do not address management of project knowledge, but also they recommend little criteria to assess the maturity of PMO from KM point of view. The absence of KM discussion in current PMMMs was defined as the subject of a research project in order for addressing KM practices at various maturity levels of PMO. In order to address the mentioned gap, a framework has been developed based on the current discussions of both PM and KM. The proposed framework comprises three premises: KM processes and practices, PMMM, and KM Maturity Model (KMMM). The incorporation of KMMM practices at various maturity levels of PMO is one of the significance of this framework. It proposes numbers of KM strategies, processes, and practices to address project knowledge management at various levels PMO. This framework shall be useful guidance for developing PMOs from KM perspective. In other words, it contributes to management of project knowledge, as a key for project success. The proposed framework follows the process-based approach and it could be employed alongside the current PMMMs for PMO development. This paper presents the developed framework, theoretical background, premises, proposed KM practices, and processes to be employed in Project-based Organisations and PMOs. This framework has been examined at numbers of case studies with different maturity levels. The case studies outcomes, which will be subjects for future papers, have not shown any significant contradiction yet, however, more investigations are being conducted to validate the proposed framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma nanoscience is an emerging multidisciplinary research field at the cutting edge of a large number of disciplines including but not limited to physics and chemistry of plasmas and gas discharges, materials science, surface science, nanoscience and nanotechnology, solid-state physics, space physics and astrophysics, photonics, optics, plasmonics, spintronics, quantum information, physical chemistry, biomedical sciences and related engineering subjects. This paper examines the origin, progress and future perspectives of this research field driven by the global scientific and societal challenges. The future potential of plasma nanoscience to remain a highly topical area in the global research and technological agenda in the age of fundamental-level control for a sustainable future is assessed using a framework of the five Grand Challenges for Basic Energy Sciences recently mapped by the US Department of Energy. It is concluded that the ongoing research is very relevant and is expected to substantially expand to competitively contribute to the solution of all of these Grand Challenges. The approach to controlling energy and matter at nano- and subnanoscales is based on identifying the prevailing carriers and transfer mechanisms of the energy and matter at the spatial and temporal scales that are most relevant to any particular nanofabrication process. Strong accent is made on the competitive edge of the plasma-based nanotechnology in applications related to the major socio-economic issues (energy, food, water, health and environment) that are crucial for a sustainable development of humankind. Several important emerging topics, opportunities and multidisciplinary synergies for plasma nanoscience are highlighted. The main nanosafety issues are also discussed and the environment- and human health-friendly features of plasma-based nanotech are emphasized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tailoring the density of random single-walled carbon nanotube (SWCNT) networks is of paramount importance for various applications, yet it remains a major challenge due to the insufficient catalyst activation in most growth processes. Here we report on a simple and effective method to maximise the number of active catalyst nanoparticles using catalytic chemical vapor deposition (CCVD). By modulating short pulses of acetylene into a methane-based CCVD growth process, the density of SWCNTs is dramatically increased by up to three orders of magnitude without increasing the catalyst density and degrading the nanotube quality. In the framework of a vapor-liquid-solid model, we attribute the enhanced growth to the high dissociation rate of acetylene at high temperatures at the nucleation stage, which can be effective in both supersaturating the larger catalyst nanoparticles and overcoming the nanotube nucleation energy barrier of the smaller catalyst nanoparticles. These results are highly relevant to numerous applications of random SWCNT networks in next-generation energy, sensing and biomedical devices. © 2011 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a post-disaster environment, housing reconstruction projects frequently face enormous difficulties due to the various, often apparently ill-considered, internal and external factors. Non-Governmental Organisations (NGOs) operating in post-disaster settings such as in Afghanistan continue to face blame over the failure of reconstruction projects, and worse, they are sometimes even viewed as being corrupt entities. While it is not always possible for NGOs to eliminate or reduce the impact of factors that are outside their control, they certainly can increase the chances of project success by placing considerable emphasis on working more effectively with the affected communities. To achieve maximum community participation in reconstruction projects , this research develops a specific logical framework to guide the process of community participation in post-disaster housing reconstruction in Afghanistan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This mobility prediction model is trained using sample executions of motion primitives on representative terrain, and predicts the future outcome of control actions on similar terrain. Using Gaussian process regression allows us to exploit its inherent measure of prediction uncertainty in planning. We integrate mobility prediction into a Markov decision process framework and use dynamic programming to construct a control policy for navigation to a goal region in a terrain map built using an on-board depth sensor. We consider both rigid terrain, consisting of uneven ground, small rocks, and non-traversable rocks, and also deformable terrain. We introduce two methods for training the mobility prediction model from either proprioceptive or exteroceptive observations, and report results from nearly 300 experimental trials using a planetary rover platform in a Mars-analogue environment. Our results validate the approach and demonstrate the value of planning under uncertainty for safe and reliable navigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel framework for the modelling of passenger facilitation in a complex environment. The research is motivated by the challenges in the airport complex system, where there are multiple stakeholders, differing operational objectives and complex interactions and interdependencies between different parts of the airport system. Traditional methods for airport terminal modelling do not explicitly address the need for understanding causal relationships in a dynamic environment. Additionally, existing Bayesian Network (BN) models, which provide a means for capturing causal relationships, only present a static snapshot of a system. A method to integrate a BN complex systems model with stochastic queuing theory is developed based on the properties of the Poisson and exponential distributions. The resultant Hybrid Queue-based Bayesian Network (HQBN) framework enables the simulation of arbitrary factors, their relationships, and their effects on passenger flow and vice versa. A case study implementation of the framework is demonstrated on the inbound passenger facilitation process at Brisbane International Airport. The predicted outputs of the model, in terms of cumulative passenger flow at intermediary and end points in the inbound process, are found to have an R2 goodness of fit of 0.9994 and 0.9982 respectively over a 10 h test period. The utility of the framework is demonstrated on a number of usage scenarios including causal analysis and ‘what-if’ analysis. This framework provides the ability to analyse and simulate a dynamic complex system, and can be applied to other socio-technical systems such as hospitals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a layered framework for the purposes of integrating different Socio-Technical Systems (STS) models and perspectives into a whole-of-systems model. Holistic modelling plays a critical role in the engineering of STS due to the interplay between social and technical elements within these systems and resulting emergent behaviour. The framework decomposes STS models into components, where each component is either a static object, dynamic object or behavioural object. Based on existing literature, a classification of the different elements that make up STS, whether it be a social, technical or a natural environment element, is developed; each object can in turn be classified according to the STS elements it represents. Using the proposed framework, it is possible to systematically decompose models to an extent such that points of interface can be identified and the contextual factors required in transforming the component of one model to interface into another is obtained. Using an airport inbound passenger facilitation process as a case study socio-technical system, three different models are analysed: a Business Process Modelling Notation (BPMN) model, Hybrid Queue-based Bayesian Network (HQBN) model and an Agent Based Model (ABM). It is found that the framework enables the modeller to identify non-trivial interface points such as between the spatial interactions of an ABM and the causal reasoning of a HQBN, and between the process activity representation of a BPMN and simulated behavioural performance in a HQBN. Such a framework is a necessary enabler in order to integrate different modelling approaches in understanding and managing STS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Industrial control systems (ICS) have been moving from dedicated communications to switched and routed corporate networks, making it probable that these devices are being exposed to the Internet. Many ICS have been designed with poor or little security features, making them vulnerable to potential attack. Recently, several tools have been developed that can scan the internet, including ZMap, Masscan and Shodan. However, little in-depth analysis has been done to compare these Internet-wide scanning techniques, and few Internet-wide scans have been conducted targeting ICS and protocols. In this paper we present a Taxonomy of Internet-wide scanning with a comparison of three popular network scanning tools, and a framework for conducting Internet-wide scans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is commonplace to use digital video cameras in robotic applications. These cameras have built-in exposure control but they do not have any knowledge of the environment, the lens being used, the important areas of the image and do not always produce optimal image exposure. Therefore, it is desirable and often necessary to control the exposure off the camera. In this paper we present a scheme for exposure control which enables the user application to determine the area of interest. The proposed scheme introduces an intermediate transparent layer between the camera and the user application which combines the information from these for optimal exposure production. We present results from indoor and outdoor scenarios using directional and fish-eye lenses showing the performance and advantages of this framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Improving hand hygiene among health care workers (HCWs) is the single most effective intervention to reduce health care associated infections in hospitals. Understanding the cognitive determinants of hand hygiene decisions for HCWs with the greatest patient contact (nurses) is essential to improve compliance. The aim of this study was to explore hospital-based nurses’ beliefs associated with performing hand hygiene guided by the World Health Organization’s (WHO) 5 critical moments. Using the belief-base framework of the Theory of Planned Behaviour, we examined attitudinal, normative, and control beliefs underpinning nurses’ decisions to perform hand hygiene according to the recently implemented national guidelines. Methods Thematic content analysis of qualitative data from focus group discussions with hospital-based registered nurses from 5 wards across 3 hospitals in Queensland, Australia. Results Important advantages (protection of patient and self), disadvantages (time, hand damage), referents (supportive: patients, colleagues; unsupportive: some doctors), barriers (being too busy, emergency situations), and facilitators (accessibility of sinks/products, training, reminders) were identified. There was some equivocation regarding the relative importance of hand washing following contact with patient surroundings. Conclusions The belief base of the theory of planned behaviour provided a useful framework to explore systematically the underlying beliefs of nurses’ hand hygiene decisions according to the 5 critical moments, allowing comparisons with previous belief studies. A commitment to improve nurses’ hand hygiene practice across the 5 moments should focus on individual strategies to combat distraction from other duties, peer-based initiatives to foster a sense of shared responsibility, and management-driven solutions to tackle staffing and resource issues. Hand hygiene following touching a patient’s surroundings continues to be reported as the most neglected opportunity for compliance.