745 resultados para Computer Security
Resumo:
This paper describes in detail our Security-Critical Program Analyser (SCPA). SCPA is used to assess the security of a given program based on its design or source code with regard to data flow-based metrics. Furthermore, it allows software developers to generate a UML-like class diagram of their program and annotate its confidential classes, methods and attributes. SCPA is also capable of producing Java source code for the generated design of a given program. This source code can then be compiled and the resulting Java bytecode program can be used by the tool to assess the program's overall security based on our security metrics.
Resumo:
Refactoring is a common approach to producing better quality software. Its impact on many software quality properties, including reusability, maintainability and performance, has been studied and measured extensively. However, its impact on the information security of programs has received relatively little attention. In this work, we assess the impact of a number of the most common code-level refactoring rules on data security, using security metrics that are capable of measuring security from the viewpoint of potential information flow. The metrics are calculated for a given Java program using a static analysis tool we have developed to automatically analyse compiled Java bytecode. We ran our Java code analyser on various programs which were refactored according to each rule. New values of the metrics for the refactored programs then confirmed that the code changes had a measurable effect on information security.
Resumo:
NeSSi (network security simulator) is a novel network simulation tool which incorporates a variety of features relevant to network security distinguishing it from general-purpose network simulators. Its capabilities such as profile-based automated attack generation, traffic analysis and support for detection algorithm plug-ins allow it to be used for security research and evaluation purposes. NeSSi has been successfully used for testing intrusion detection algorithms, conducting network security analysis and developing overlay security frameworks. NeSSi is built upon the agent framework JIAC, resulting in a distributed and extensible architecture. In this paper, we provide an overview of the NeSSi architecture as well as its distinguishing features and briefly demonstrate its application to current security research projects.
Resumo:
We blend research from human-computer interface (HCI) design with computational based crypto- graphic provable security. We explore the notion of practice-oriented provable security (POPS), moving the focus to a higher level of abstraction (POPS+) for use in providing provable security for security ceremonies involving humans. In doing so we high- light some challenges and paradigm shifts required to achieve meaningful provable security for a protocol which includes a human. We move the focus of security ceremonies from being protocols in their context of use, to the protocols being cryptographic building blocks in a higher level protocol (the security cere- mony), which POPS can be applied to. In order to illustrate the need for our approach, we analyse both a protocol proven secure in theory, and a similar proto- col implemented by a �nancial institution, from both HCI and cryptographic perspectives.
Resumo:
Our daily lives become more and more dependent upon smartphones due to their increased capabilities. Smartphones are used in various ways from payment systems to assisting the lives of elderly or disabled people. Security threats for these devices become increasingly dangerous since there is still a lack of proper security tools for protection. Android emerges as an open smartphone platform which allows modification even on operating system level. Therefore, third-party developers have the opportunity to develop kernel-based low-level security tools which is not normal for smartphone platforms. Android quickly gained its popularity among smartphone developers and even beyond since it bases on Java on top of "open" Linux in comparison to former proprietary platforms which have very restrictive SDKs and corresponding APIs. Symbian OS for example, holding the greatest market share among all smartphone OSs, was closing critical APIs to common developers and introduced application certification. This was done since this OS was the main target for smartphone malwares in the past. In fact, more than 290 malwares designed for Symbian OS appeared from July 2004 to July 2008. Android, in turn, promises to be completely open source. Together with the Linux-based smartphone OS OpenMoko, open smartphone platforms may attract malware writers for creating malicious applications endangering the critical smartphone applications and owners� privacy. In this work, we present our current results in analyzing the security of Android smartphones with a focus on its Linux side. Our results are not limited to Android, they are also applicable to Linux-based smartphones such as OpenMoko Neo FreeRunner. Our contribution in this work is three-fold. First, we analyze android framework and the Linux-kernel to check security functionalities. We survey wellaccepted security mechanisms and tools which can increase device security. We provide descriptions on how to adopt these security tools on Android kernel, and provide their overhead analysis in terms of resource usage. As open smartphones are released and may increase their market share similar to Symbian, they may attract attention of malware writers. Therefore, our second contribution focuses on malware detection techniques at the kernel level. We test applicability of existing signature and intrusion detection methods in Android environment. We focus on monitoring events on the kernel; that is, identifying critical kernel, log file, file system and network activity events, and devising efficient mechanisms to monitor them in a resource limited environment. Our third contribution involves initial results of our malware detection mechanism basing on static function call analysis. We identified approximately 105 Executable and Linking Format (ELF) executables installed to the Linux side of Android. We perform a statistical analysis on the function calls used by these applications. The results of the analysis can be compared to newly installed applications for detecting significant differences. Additionally, certain function calls indicate malicious activity. Therefore, we present a simple decision tree for deciding the suspiciousness of the corresponding application. Our results present a first step towards detecting malicious applications on Android-based devices.
Resumo:
Threats against computer networks evolve very fast and require more and more complex measures. We argue that teams respectively groups with a common purpose for intrusion detection and prevention improve the measures against rapid propagating attacks similar to the concept of teams solving complex tasks known from field of work sociology. Collaboration in this sense is not easy task especially for heterarchical environments. We propose CIMD (collaborative intrusion and malware detection) as a security overlay framework to enable cooperative intrusion detection approaches. Objectives and associated interests are used to create detection groups for exchange of security-related data. In this work, we contribute a tree-oriented data model for device representation in the scope of security. We introduce an algorithm for the formation of detection groups, show realization strategies for the system and conduct vulnerability analysis. We evaluate the benefit of CIMD by simulation and probabilistic analysis.
Resumo:
We present a virtual test bed for network security evaluation in mid-scale telecommunication networks. Migration from simulation scenarios towards the test bed is supported and enables researchers to evaluate experiments in a more realistic environment. We provide a comprehensive interface to manage, run and evaluate experiments. On basis of a concrete example we show how the proposed test bed can be utilized.
Resumo:
The evolution of classic power grids to smart grids creates chances for most participants in the energy sector. Customers can save money by reducing energy consumption, energy providers can better predict energy demand and environment benefits since lower energy consumption implies lower energy production including a decrease of emissions from plants. But information and communication systems supporting smart grids can also be subject to classical or new network attacks. Attacks can result in serious damage such as harming privacy of customers, creating economical loss and even disturb the power supply/demand balance of large regions and countries. In this paper, we give an overview about the German smart measuring architecture, protocols and security. Afterwards, we present a simulation framework which enables researchers to analyze security aspects of smart measuring scenarios.
Resumo:
We introduce the Network Security Simulator (NeSSi2), an open source discrete event-based network simulator. It incorporates a variety of features relevant to network security distinguishing it from general-purpose network simulators. Compared to the predecessor NeSSi, it was extended with a three-tier plugin architecture and a generic network model to shift its focus towards simulation framework for critical infrastructures. We demonstrate the gained adaptability by different use cases
Resumo:
Session Initiation Protocol (SIP) is developed to provide advanced voice services over IP networks. SIP unites telephony and data world, permitting telephone calls to be transmitted over Intranets and Internet. Increase in network performance and new mechanisms for guaranteed quality of service encourage this consolidation to provide toll cost savings. Security comes up as one of the most important issues when voice communication and critical voice applications are considered. Not only the security methods provided by traditional telephony systems, but also additional methods are required to overcome security risks introduced by the public IP networks. SIP considers security problems of such a consolidation and provides a security framework. There are several security methods defined within SIP specifications and extensions. But, suggested methods can not solve all the security problems of SIP systems with various system requirements. In this thesis, a Kerberos based solution is proposed for SIP security problems, including SIP authentication and privacy. The proposed solution tries to establish flexible and scalable SIP system that will provide desired level of security for voice communications and critical telephony applications.
Resumo:
We present and analyze several gaze-based graphical password schemes based on recall and cued-recall of grid points; eye-trackers are used to record user's gazes, which can prevent shoulder-surfing and may be suitable for users with disabilities. Our 22-subject study observes that success rate and entry time for the grid-based schemes we consider are comparable to other gaze-based graphical password schemes. We propose the first password security metrics suitable for analysis of graphical grid passwords and provide an in-depth security analysis of user-generated passwords from our study, observing that, on several metrics, user-generated graphical grid passwords are substantially weaker than uniformly random passwords, despite our attempts at designing schemes to improve quality of user-generated passwords.
Resumo:
The security of industrial control systems in critical infrastructure is a concern for the Australian government and other nations. There is a need to provide local Australian training and education for both control system engineers and information technology professionals. This paper proposes a postgraduate curriculum of four courses to provide knowledge and skills to protect critical infrastructure industrial control systems. Our curriculum is unique in that it provides security awareness but also the advanced skills required for security specialists in this area. We are aware that in the Australian context there is a cultural gap between the thinking of control system engineers who are responsible for maintaining and designing critical infrastructure and information technology professionals who are responsible for protecting these systems from cyber attacks. Our curriculum aims to bridge this gap by providing theoretical and practical exercises that will raise the awareness and preparedness of both groups of professionals.
Resumo:
Extracting and aggregating the relevant event records relating to an identified security incident from the multitude of heterogeneous logs in an enterprise network is a difficult challenge. Presenting the information in a meaningful way is an additional challenge. This paper looks at solutions to this problem by first identifying three main transforms; log collection, correlation, and visual transformation. Having identified that the CEE project will address the first transform, this paper focuses on the second, while the third is left for future work. To aggregate by correlating event records we demonstrate the use of two correlation methods, simple and composite. These make use of a defined mapping schema and confidence values to dynamically query the normalised dataset and to constrain result events to within a time window. Doing so improves the quality of results, required for the iterative re-querying process being undertaken. Final results of the process are output as nodes and edges suitable for presentation as a network graph.