726 resultados para Classification models


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Smart State initiative requires both improved education and training, panicularly in technical fields, plus entrepreneurship to commercialise new ideas. In this study, we propose an entrepreneurial intentions model as a guide to examine the educational choices and entrepreneurial intentions of first-year University students, focusing on the effect of role models. A survey of over 1000 first-year University students revealed that the most enterprising students were choosing to study in the disciplines of information technology and business, economics and law, or selecting dualdegree programs that include business. The role models most often identified for their choice of field of study were parents,followed by teachers and peers, with females identifying more role models than males. For entrepreneurship, students' role models were parents andpeers,followed by famous persons and teachers. Males and females identified similar numbers of role models, but males found starting a business more desirable and more feasible, and reponed higher entrepreneurial intention. The implications of these findings for Smart State policy are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative behaviour analysis requires the classification of behaviour to produce the basic data. In practice, much of this work will be performed by multiple observers, and maximising inter-observer consistency is of particular importance. Another discipline where consistency in classification is vital is biological taxonomy. A classification tool of great utility, the binary key, is designed to simplify the classification decision process and ensure consistent identification of proper categories. We show how this same decision-making tool - the binary key - can be used to promote consistency in the classification of behaviour. The construction of a binary key also ensures that the categories in which behaviour is classified are complete and non-overlapping. We discuss the general principles of design of binary keys, and illustrate their construction and use with a practical example from education research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper summarizes the papers presented in the thematic stream Models for the Analysis of Individual and Group Needs, at the 2007 IAEVG-SVP-NCDA Symposium: Vocational Psychology and Career Guidance Practice: An International Partnership. The predominant theme which emerged from the papers was that theory and practice need to be positioned within their contexts. For this paper, context has been formulated as a dimension ranging from the individual’s experience of himself or herself in conversations, including interpersonal transactions and body culture, through to broad higher levels of education, work, nation, and economy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Paper first provides a review and analysis of the recent trends on innovation infrastructures developed in industrialised countries to promote innovation and competitiveness for high growth SMEs. It specifically aims to examine various spatial models developed to support provision of innovation infrastructure for high growth sector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper describes three design models that make use of generative and evolutionary systems. The models describe overall design methods and processes. Each model defines a set of tasks to be performed by the design team, and in each case one of the tasks requires a generative or evolutionary design system. The architectures of these systems are also broadly described.