145 resultados para Central composite design


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distance education has gone through rapid expansion over the years. Many Australian universities are pushing the use of distance education in delivering construction education programs. However, the critical success factors (CSFs) in distance learning construction programs (DLCPs) are not fully understood. More importantly, students’ demographic features may affect the selection of distance education technologies. Situation-matching strategies should therefore be taken by universities or institutions with different student cohorts. A survey is adopted in Central Queensland University (CQU) to identify and rank the critical success factors in a DLCP in Australia where there is a significant number of earner-learners and students with low socioeconomic background. The findings suggest that the most important CSFs include access to computers and internet, reliability of web-based learning sites, high relevance and clarity of learning materials and assessment items, the availability of web-based learning sites that can be easily manipulated, and the capability of the instructors to provide well-structured courses. The findings also suggest that students with low socioeconomic background have more rigorous requirements on interface design, instructors’ support, and the integration of practical components into courses. The results provide good guidance of the design and delivery of DLCPs and will be useful for universities and institutions that are seeking to implement the distance mode in construction education.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Available industrial energy meters offer high accuracy and reliability, but are typically expensive and low-bandwidth, making them poorly suited to multi-sensor data acquisition schemes and power quality analysis. An alternative measurement system is proposed in this paper that is highly modular, extensible and compact. To minimise cost, the device makes use of planar coreless PCB transformers to provide galvanic isolation for both power and data. Samples from multiple acquisition devices may be concentrated by a central processor before integration with existing host control systems. This paper focusses on the practical design and implementation of planar coreless PCB transformers to facilitate the module's isolated power, clock and data signal transfer. Calculations necessary to design coreless PCB transformers, and circuits designed for the transformer's practical application in the measurement module are presented. The designed transformer and each application circuit have been experimentally verified, with test data and conclusions made applicable to coreless PCB transformers in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Young people in detention are at greater risk of death and disability from injury sustained while not in custody. Injury prevention and mental health programs have been designed for this group but their theoretical basis is rarely discussed. The present study investigates whether the conceptual basis of the Theory of Planned Behavior (TPB) is relevant to youth in a detention center. Focus group and observational data were collected. A thematic analysis supported central theoretical constructs and emphasized “Subjective Norms.” The challenge of normative influences must be actively addressed in the design of health interventions for youth in detention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study proposes an optimized approach of designing in which a model specially shaped composite tank for spacecrafts is built by applying finite element analysis. The composite layers are preliminarily designed by combining quasi-network design method with numerical simulation, which determines the ratio between the angle and the thickness of layers as the initial value of the optimized design. By adopting an adaptive simulated annealing algorithm, the angles and the numbers of layers at each angle are optimized to minimize the weight of structure. Based on this, the stacking sequence of composite layers is formulated according to the number of layers in the optimized structure by applying the enumeration method and combining the general design parameters. Numerical simulation is finally adopted to calculate the buckling limit of tanks in different designing methods. This study takes a composite tank with a cone-shaped cylinder body as example, in which ellipsoid head section and outer wall plate are selected as the object to validate this method. The result shows that the quasi-network design method can improve the design quality of composite material layer in tanks with complex preliminarily loading conditions. The adaptive simulated annealing algorithm can reduce the initial design weight by 30%, which effectively probes the global optimal solution and optimizes the weight of structure. It can be therefore proved that, this optimization method is capable of designing and optimizing specially shaped composite tanks with complex loading conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An innovative cement-based soft-hard-soft (SHS) multi-layer composite has been developed for protective infrastructures. Such composite consists of three layers including asphalt concrete (AC), high strength concrete (HSC), and engineered cementitious composites (ECC). A three dimensional benchmark numerical model for this SHS composite as pavement under blast load was established using LSDYNA and validated by field blast test. Parametric studies were carried out to investigate the influence of a few key parameters including thickness and strength of HSC and ECC layers, interface properties, soil conditions on the blast resistance of the composite. The outcomes of this study also enabled the establishment of a damage pattern chart for protective pavement design and rapid repair after blast load. Efficient methods to further improve the blast resistance of the SHS multi-layer pavement system were also recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol–cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in situ in this difficult-to-reach region with logistically demanding environmental conditions. The Arctic Summer Cloud Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007–2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait: two in open water and two in the marginal ice zone. After traversing the pack ice northward, an ice camp was set up on 12 August at 87°21' N, 01°29' W and remained in operation through 1 September, drifting with the ice. During this time, extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first-ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggests the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations, and the balance between local and remote aerosols sources remains open. Lack of cloud condensation nuclei (CCN) was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increased interest in measuring the amount of greenhouse gases produced by farming practices . This paper describes an integrated solar powered Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system for greenhouse gas emissions in agricultural lands. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the unmanned aerial system (UAS)as well as a data management platform to store, analyze and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications at a relatively low operational cost. In particular, agricultural environments are increasingly subject to emissions mitigation policies. Accurate measurements of CH4 and CO2 with its temporal and spatial variability can provide farm managers key information to plan agricultural practices. A video of the bench and flight test performed can be seen in the following link: https://www.youtube.com/watch?v=Bwas7stYIxQ

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computational technique of the full ranges of the second-order inelastic behaviour evaluation of steel-concrete composite structure is not always sought forgivingly, and therefore it hinders the development and application of the performance-based design approach for the composite structure. To this end, this paper addresses of the advanced computational technique of the higher-order element with the refined plastic hinges to capture the all-ranges behaviour of an entire steel-concrete composite structure. Moreover, this paper presents the efficient and economical cross-section analysis to evaluate the element section capacity of the non-uniform and arbitrary composite section subjected to the axial and bending interaction. Based on the same single algorithm, it can accurately and effectively evaluate nearly continuous interaction capacity curve from decompression to pure bending technically, which is the important capacity range but highly nonlinear. Hence, this cross-section analysis provides the simple but unique algorithm for the design approach. In summary, the present nonlinear computational technique can simulate both material and geometric nonlinearities of the composite structure in the accurate, efficient and reliable fashion, including partial shear connection and gradual yielding at pre-yield stage, plasticity and strain-hardening effect due to axial and bending interaction at post-yield stage, loading redistribution, second-order P-δ and P-Δ effect, and also the stiffness and strength deterioration. And because of its reliable and accurate behavioural evaluation, the present technique can be extended for the design of the high-strength composite structure and potentially for the fibre-reinforced concrete structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Around the world, guidelines and clinical practice for the prevention of complications associated with central venous catheters (CVC) vary greatly. To prevent occlusion, most institutions recommend the use of heparin when the CVC is not in use. However, there is debate regarding the need for heparin and evidence to suggest normal saline may be as effective. The use of heparin is not without risk, may be unnecessary and is also associated with increased costs. Objectives To assess the clinical effects (benefits and harms) of heparin versus normal saline to prevent occlusion in long-term central venous catheters in infants, children and adolescents. Design A Cochrane systematic review of randomised controlled trials was undertaken. - Data sources: The Cochrane Vascular Group Specialised Register (including MEDLINE, CINAHL, EMBASE and AMED) and the Cochrane Register of Studies were searched. Hand searching of relevant journals and reference lists of retrieved articles was also undertaken. - Review Methods: Data were extracted and appraisal undertaken. We included studies that compared the efficacy of normal saline with heparin to prevent occlusion. We excluded temporary CVCs and peripherally inserted central catheters. Rate ratios per 1000 catheter days were calculated for two outcomes, occlusion of the CVC, and CVC-associated blood stream infection. Results Three trials with a total of 245 participants were included in this review. The three trials directly compared the use of normal saline and heparin. However, between studies, all used different protocols with various concentrations of heparin and frequency of flushes. The quality of the evidence ranged from low to very low. The estimated rate ratio for CVC occlusion per 1000 catheter days between the normal saline and heparin group was 0.75 (95% CI 0.10 to 5.51, two studies, 229 participants, very low quality evidence). The estimated rate ratio for CVC-associated blood stream infection was 1.48 (95% CI 0.24 to 9.37, two studies, 231 participants; low quality evidence). Conclusions It remains unclear whether heparin is necessary for CVC maintenance. More well-designed studies are required to understand this relatively simple, but clinically important question. Ultimately, if this evidence were available, the development of evidenced-based clinical practice guidelines and consistency of practice would be facilitated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concrete-filled double skin tube (CFDST) is a creative innovation of steel-concrete-steel composite construction, formed by two concentric steel tubes separated by a concrete filler. Over the recent years, this column form has been widely used as a new sustainable alternative to existing structural bridge piers and building columns. Since they could be vulnerable to impact from passing vessels or vehicles, it is necessary to understand their behaviour under lateral impact loads. With this in mind, physical tests on full scale columns were performed using an innovative horizontal impact testing system to obtain the failure modes, the time history of the impact force, reaction forces and global lateral deflection as well as permanent local buckling profile of the columns. The experimental testing was complemented and supplemented by developing and using an advanced finite element analysis model. The model was validated by comparing the numerical results against experimental data. The findings of this study will serve as a benchmark reference for future analysis and design of CFDST columns.