78 resultados para CYCLIC PEPTIDE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggregation of the microtubule associated protein tau (MAPT) within neurons of the brain is the leading cause of tauopathies such as Alzheimer's disease. MAPT is a phospho-protein that is selectively phosphorylated by a number of kinases in vivo to perform its biological function. However, it may become pathogenically hyperphosphorylated, causing aggregation into paired helical filaments and neurofibrillary tangles. The phosphorylation induced conformational change on a peptide of MAPT (htau225−250) was investigated by performing molecular dynamics simulations with different phosphorylation patterns of the peptide (pThr231 and/or pSer235) in different simulation conditions to determine the effect of ionic strength and phosphate charge. All phosphorylation patterns were found to disrupt a nascent terminal β-sheet pattern (226VAVVR230 and 244QTAPVP249), replacing it with a range of structures. The double pThr231/pSer235 phosphorylation pattern at experimental ionic strength resulted in the best agreement with NMR structural characterization, with the observation of a transient α-helix (239AKSRLQT245). PPII helical conformations were only found sporadically throughout the simulations. Proteins 2014; 82:1907–1923. © 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyclic-oxidation behavior of Ti3SiC2-base material was studied at 1100°C in air. Scale spallation and weight loss were not observed in the present tests and the weight gain would just continue if the experiments were not interrupted. The present results demonstrated that the scale growth on Ti3SiC2-base material obeyed a parabolic rate law up to 20 cycles. It then changed to a linear rate with further increasing cycles. The scales formed on the Ti3SiC2base material were composed of an inward-growing, fine-grain mixture of Ti022 + SiO2 and an outward-growing, coarse-grain TiO2. Theoretical calculations show that the mismatch in thermal expansion coefficients between the inner scale and Ti3SiC2-base matrix is small. The outer TiO2 layer was under very low compressive stress, while the inner TiO2 + SiO2 layer was under tensile stress during cooling. Scale spaliation is, therefore, not expected and the scale formed on Ti3SiC2-base material is adherent and resistant to cyclic oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress- and strain-controlled tests of heat treated high-strength rail steel (Australian Standard AS1085.1) have been performed in order to improve the characterisation of the said material׳s ratcheting and fatigue wear behaviour. The hardness of the rail head material has also been studied and it has been found that hardness reduces considerably below four-millimetres from the rail top surface. Historically, researchers have used test coupons with circular cross-sections to conduct cyclic load tests. Such test coupons, typically five-millimetres in gauge diameter and ten‐millimetres in grip diameter, are usually taken from the rail head sample. When there is considerable variation of material properties over the cross-section it becomes likely that localised properties of the rail material will be missed. In another case from the literature, disks 47 mm in diameter for a twin-disk rolling contact test machine were obtained directly from the rail sample and used to validate ratcheting and rolling contact fatigue wear models. The question arises: How accurate are such tests, especially when large material property gradients exist? In this research paper, the effects of rail sampling location on the ratcheting behaviour of AS1085.1 rail steel were investigated using rectangular-shaped specimens obtained at four different depths to observe their respective cyclic plasticity behaviour. The microstructural features of the test coupons were also analysed, especially the pearlite inter-lamellar spacing which showed strong correlation with both hardness and cyclic plasticity behaviour of the material. This work ultimately provides new data and testing methodology to aid the selection of valid parameters for material constitutive models to better understand rail surface ratcheting and wear.