120 resultados para CORNEAL EPITHELIAL-CELLS
Resumo:
Like a set of bookends, cellular, molecular, and genetic changes of the beginnings of life mirror those of one of the most common cause of death—metastatic cancer. Epithelial to mesenchymal transition (EMT) is an important change in cell phenotype which allows the escape of epithelial cells from the structural constraints imposed by tissue architecture, and was first recognized by Elizabeth Hay in the early to mid 1980's to be a central process in early embryonic morphogenesis. Reversals of these changes, termed mesenchymal to epithelial transitions (METs), also occur and are important in tissue construction in normal development. Over the last decade, evidence has mounted for EMT as the means through which solid tissue epithelial cancers invade and metastasize. However, demonstrating this potentially rapid and transient process in vivo has proven difficult and data connecting the relevance of this process to tumor progression is still somewhat limited and controversial. Evidence for an important role of MET in the development of clinically overt metastases is starting to accumulate, and model systems have been developed. This review details recent advances in the knowledge of EMT as it occurs in breast development and carcinoma and prostate cancer progression, and highlights the role that MET plays in cancer metastasis. Finally, perspectives from a clinical and translational viewpoint are discussed
Resumo:
Prostate cancer (PCa) and benign prostatic hyperplasia (BPH) are androgen-dependent diseases commonly treated by inhibiting androgen action. However, androgen ablation or castration fail to target androgen-independent cells implicated in disease etiology and recurrence. Mechanistically different to castration, this study shows beneficial proapoptotic actions of estrogen receptor–β (ERβ) in BPH and PCa. ERβ agonist induces apoptosis in prostatic stromal, luminal and castrate-resistant basal epithelial cells of estrogen-deficient aromatase knock-out mice. This occurs via extrinsic (caspase-8) pathways, without reducing serum hormones, and perturbs the regenerative capacity of the epithelium. TNFα knock-out mice fail to respond to ERβ agonist, demonstrating the requirement for TNFα signaling. In human tissues, ERβ agonist induces apoptosis in stroma and epithelium of xenografted BPH specimens, including in the CD133+ enriched putative stem/progenitor cells isolated from BPH-1 cells in vitro. In PCa, ERβ causes apoptosis in Gleason Grade 7 xenografted tissues and androgen-independent cells lines (PC3 and DU145) via caspase-8. These data provide evidence of the beneficial effects of ERβ agonist on epithelium and stroma of BPH, as well as androgen-independent tumor cells implicated in recurrent disease. Our data are indicative of the therapeutic potential of ERβ agonist for treatment of PCa and/or BPH with or without androgen withdrawal.
Resumo:
Ubiquitylation is a necessary step in the endocytosis and lysosomal trafficking of many plasma membrane proteins and can also influence protein trafficking in the biosynthetic pathway. Although a molecular understanding of ubiquitylation in these processes is beginning to emerge, very little is known about the role deubiquitylation may play. Fat Facets in mouse (FAM) is substrate-specific deubiquitylating enzyme highly expressed in epithelia where it interacts with its substrate, β-catenin. Here we show, in the polarized intestinal epithelial cell line T84, FAM localized to multiple points of protein trafficking. FAM interacted with β-catenin and E-cadherin in T84 cells but only in subconfluent cultures. FAM extensively colocalized with β-catenin in cytoplasmic puncta but not at sites of cell-cell contact as well as immunoprecipitating with β-catenin and E-cadherin from a higher molecular weight complex (~500 kDa). At confluence FAM neither colocalized with, nor immunoprecipitated, β-catenin or E-cadherin, which were predominantly in a larger molecular weight complex (~2 MDa) at the cell surface. Overexpression of FAM in MCF-7 epithelial cells resulted in increased β-catenin levels, which localized to the plasma membrane. Expression of E-cadherin in L-cell fibroblasts resulted in the relocalization of FAM from the Golgi to cytoplasmic puncta. These data strongly suggest that FAM associates with E-cadherin and β-catenin during trafficking to the plasma membrane.
Interleukin-13 promotes susceptibility to chlamydial infection of the respiratory and genital tracts
Resumo:
Chlamydiae are intracellular bacteria that commonly cause infections of the respiratory and genital tracts, which are major clinical problems. Infections are also linked to the aetiology of diseases such as asthma, emphysema and heart disease. The clinical management of infection is problematic and antibiotic resistance is emerging. Increased understanding of immune processes that are involved in both clearance and immunopathology of chlamydial infection is critical for the development of improved treatment strategies. Here, we show that IL-13 was produced in the lungs of mice rapidly after Chlamydia muridarum (Cmu) infection and promoted susceptibility to infection. Wild-type (WT) mice had increased disease severity, bacterial load and associated inflammation compared to IL-13 deficient (−/−) mice as early as 3 days post infection (p.i.). Intratracheal instillation of IL-13 enhanced bacterial load in IL-13−/− mice. There were no differences in early IFN-g and IL-10 expression between WT and IL-13−/− mice and depletion of CD4+ T cells did not affect infection in IL-13−/− mice. Collectively, these data demonstrate a lack of CD4+ T cell involvement and a novel role for IL-13 in innate responses to infection. We also showed that IL-13 deficiency increased macrophage uptake of Cmu in vitro and in vivo. Moreover, the depletion of IL-13 during infection of lung epithelial cells in vitro decreased the percentage of infected cells and reduced bacterial growth. Our results suggest that enhanced IL-13 responses in the airways, such as that found in asthmatics, may promote susceptibility to chlamydial lung infection. Importantly the role of IL-13 in regulating infection was not limited to the lung as we showed that IL-13 also promoted susceptibility to Cmu genital tract infection. Collectively our findings demonstrate that innate IL-13 release promotes infection that results in enhanced inflammation and have broad implications for the treatment of chlamydial infections and IL-13-associated diseases.
Resumo:
Prostate cancer is the second most common cause of cancer related deaths in Western men. Despite the significant improvements in current treatment techniques, there is no cure for advanced metastatic, castrate-resistant disease. Early detection and prevention of progression to a castrate-resistant state may provide new strategies to improve survival. A number of growth factors have been shown to act in an autocrine/paracrine manner to modulate prostate cancer tumour growth. Our laboratory has previously shown that ghrelin and its receptors (the functional GHS-R1a and the non-functional GHS-R1b) are expressed in prostate cancer specimens and cell lines. We have shown that ghrelin increases cell proliferation in the PC3 and LNCaP prostate cancer cell lines through activation of ERK1/2, suggesting that ghrelin could regulate prostate cancer cell growth and play a role in the progression of the disease. Ghrelin is a 28 amino-acid peptide hormone, identified to be the natural ligand of the growth hormone secretagogue receptor (GHS-R1a). It is well characterised as a growth hormone releasing and as an orexigenic peptide that stimulates appetite and feeding and regulates energy expenditure and bodyweight. In addition to its orexigenic properties, ghrelin has been shown to play a regulatory role in a number of systems, including the reproductive, immune and cardiovascular systems and may play a role in a number of pathological conditions such as chronic heart failure, anorexia, cachexia, obesity, diabetes and cancer. In cancer, ghrelin and its receptor are expressed in a range of tumours and cancer cell lines and ghrelin has been demonstrated to modulate cell proliferation, apoptosis, migration and invasion in some cell types. The ghrelin gene (GHRL) encodes preproghrelin peptide, which is processed to produce three currently known functional peptides - ghrelin, desacyl ghrelin and obestatin. Prohormone convertases (PCs) have been shown to cleave the preproghrelin peptide into two primary products - the 28 amino acid peptide, ghrelin, and the remaining 117 amino acid C-terminal peptide, C-ghrelin. C-ghrelin can then be further processed to produce the 23 amino acid peptide, obestatin. Ghrelin circulates in two different forms - an octanoylated form (known as ghrelin) and a non-octanoylated form, desacyl ghrelin. The unique post-translational addition of octanoic acid to the serine 3 residue of the propeptide chain to form acylated ghrelin is catalysed by ghrelin O-acyltransferase (GOAT). This modification is necessary for binding of ghrelin to its only known functional receptor, the GHS-R1a. As desacyl ghrelin cannot bind and activate the GHS-R1a, it was initially thought to be an inactive peptide, despite the fact that it circulates at much higher levels than ghrelin. Further research has demonstrated that desacyl ghrelin is biologically active and shares some of the actions of ghrelin, as well as having some opposing and distinct roles. Interestingly, both ghrelin and desacyl ghrelin have been shown to modulate apoptosis, cell differentiation and proliferation in some cell types, and to stimulate cell proliferation through activation of ERK1/2 and PI3K/Akt pathways. The third known peptide product of the ghrelin preprohormone, obestatin, was initially thought to oppose the actions of ghrelin in appetite regulation and food intake and to mediate its effects through the G protein-coupled receptor 39 (GPR39). Subsequent research failed to reproduce the initial findings, however, and the possible anorexigenic effects of obestatin, as well as the identity of its receptor, remain unclear. Obestatin plays some important physiological roles, including roles in improving memory, the inhibition of thirst and anxiety, increased secretion of pancreatic juice, and regulation of cell proliferation, survival, apoptosis and differentiation. Preliminary studies have also shown that obestatin stimulates cell proliferation in some cell types through activation of ERK1/2, Akt and PKC pathways. Overall, however, at the commencement of this PhD project, relatively little was known regarding the functions and mechanisms of action of the preproghrelin-derived functional peptides in modulating prostate cancer cell proliferation. The roles of obestatin, and desacyl ghrelin as potential growth factors had not previously been investigated, and the potential expression and regulation of the preproghrelin processing enzymes, GOAT and prohormone convertases was unknown in prostate cancer cell lines. Therefore, the overall objectives of this study were to: 1. investigate the effects of obestatin on cell proliferation and signaling in prostate cancer cell lines 2. compare the effects of desacyl ghrelin and ghrelin on cell proliferation and signaling in prostate cancer cell lines 3. investigate whether prostate cancer cell lines possess the necessary enzymatic machinery to produce ghrelin and desacyl ghrelin and if these peptides can regulate GOAT expression Our laboratory has previously shown that ghrelin stimulates cell proliferation in the PC3 and LNCaP prostate cancer cell line through activation of the ERK1/2 pathway. In this study it has been demonstrated that treatments with either ghrelin, desacyl ghrelin or obestatin over 72 hours significantly increased cell proliferation in the PC3 prostate cancer cell line but had no significant effect in the RWPE-1 transformed normal prostate cell line. Ghrelin (1000nM) stimulated cell proliferation in the PC3 prostate cancer cell line by 31.66 6.68% (p<0.01) with the WST-1 method, and 13.55 5.68% (p<0.05) with the CyQUANT assay. Desacyl ghrelin (1000nM) increased cell proliferation in PC3 cells by 21.73 2.62% (p<0.01) (WST-1), and 15.46 7.05% (p<0.05) (CyQUANT) above untreated control. Obestatin (1000nM) induced a 28.37 7.47% (p<0.01) (WST-1) and 12.14 7.47% (p<0.05) (CyQUANT) significant increase in cell proliferation in the PC3 prostate cancer cell line. Ghrelin and desacyl ghrelin treatments stimulated Akt and ERK phosphorylation across a range of concentrations (p<0.01). Obestatin treatment significantly stimulated Akt, ERK and PKC phosphorylation (p<0.05). Through the use of specific inhibitors, the MAPK inhibitor U0126 and the Akt1/2 kinase inhibitor, it was demonstrated that ghrelin- and obestatin-induced cell proliferation in the PC3 prostate cancer cell line is mediated through activation of ERK1/2 and Akt pathways. Although desacyl ghrelin significantly stimulated Akt and ERK phosphorylation, U0126 failed to prevent desacyl ghrelin-induced cell proliferation suggesting ghrelin and desacyl ghrelin might act through different mechanisms to increase cell proliferation. Ghrelin and desacyl ghrelin have shown a proliferative effect in osteoblasts, pancreatic -cells and cardiomyocytes through activation of ERK1/2 and PI3K/Akt pathways. Here it has been shown that ghrelin and its non-acylated form exert the same function and stimulate cell proliferation in the PC3 prostate cancer cell line through activation of the Akt pathway. Ghrelin-induced proliferation was also mediated through activation of the ERK1/2 pathway, however, desacyl ghrelin seems to stimulate cell proliferation in an ERK1/2-independent manner. As desacyl ghrelin does not bind and activate GHSR1a, the only known functional ghrelin receptor, the finding that both ghrelin and desacyl ghrelin stimulate cell proliferation in the PC3 cell line suggests that these peptides could be acting through the yet unidentified alternative ghrelin receptor in this cell type. Obestatin treatment also stimulated PKC phosphorylation, however, a direct role for this pathway in stimulating cell proliferation could not be proven using available PKC pathway inhibitors, as they caused significant cell death over the extended timeframe of the cell proliferation assays. Obestatin has been shown to stimulate cell proliferation through activation of PKC isoforms in human retinal epithelial cells and in the human gastric cancer cell line KATO-III. We have demonstrated that all of the prostate-derived cell lines examined (PC3, LNCaP, DU145, 22Rv1, RWPE-1 and RWPE-2) expressed GOAT and at least one of the prohormone convertases, which are known to cleave the proghrelin peptide, PC1/3, PC2 and furin, at the mRNA level. These cells, therefore, are likely to possess the necessary machinery to cleave the preproghrelin protein and to produce the mature ghrelin and desacyl ghrelin peptides. In addition to prohormone convertases, the presence of octanoic acid is essential for acylated ghrelin production. In this study octanoic acid supplementation significantly increased cell proliferation in the PC3 prostate cancer cell line by over 20% compared to untreated controls (p<0.01), but surprisingly, not in the DU145, LNCaP or 22Rv1 prostate cancer cell lines or in the RWPE-1 and RWPE-2 prostate-derived cell lines. In addition, we demonstrated that exogenous ghrelin induced a statistically significant two-fold decrease in GOAT mRNA expression in the PC3 cell line (p<0.05), suggesting that ghrelin could pontentially downregulate its own acylation and, therefore, regulate the balance between ghrelin and desacyl ghrelin. This was not observed, however, in the DU145 and LNCaP prostate cancer cell lines. The GOAT-ghrelin system represents a direct link between ingested nutrients and regulation of ghrelin production and the ghrelin/desacyl ghrelin ratio. Regulation of ghrelin acylation is a potentially attractive and desirable tool for the development of better therapies for a number of pathological conditions where ghrelin has been shown to play a key role. The finding that desacyl ghrelin stimulates cell proliferation in the PC3 prostate cancer cell line, and responds to ghrelin in the same way, suggests that this cell line expresses an alternative ghrelin receptor. Although all the cell lines examined expressed both GHS-R1a and GHS-R1b mRNA, it remains uncertain whether these cell lines express the unidentified alternative ghrelin receptor. It is possible that the varied responses seen could be due to the expression of different ghrelin receptors in different cell lines. In addition to GOAT, prohormone convertases and octanoic acid availability may regulate the production of different peptides from the ghrelin preprohormone. The studies presented in this thesis provide significant new information regarding the roles and mechanisms of action of the preproghrelin-derived peptides, ghrelin, desacyl ghrelin and obestatin, in modulating prostate cancer cell line proliferation. A number of key questions remain to be resolved, however, including the identification of the alternative ghrelin/desacyl ghrelin receptor, the identification of the obestatin receptor, a clarification of the signaling mechanisms which mediate cell proliferation in response to obestatin treatment and a better understanding of the regulation at both the gene and post-translational levels of functional peptide generation. Further studies investigating the role of the ghrelin axis using in vivo prostate cancer models may be warranted. Until these issues are determined, the potential for the ghrelin axis, to be recognised as a novel useful target for therapy for cancer or other pathologies will be uncertain.
Resumo:
BACKGROUND: The plasminogen activator system has been proposed to play a role in proteolytic degradation of extracellular matrices in tissue remodeling, including wound healing. The aim of this study was to elucidate the presence of components of the plasminogen activator system during different stages of periodontal wound healing. METHODS: Periodontal wounds were created around the molars of adult rats and healing was followed for 28 days. Immunohistochemical analyses of the healing tissues and an analysis of the periodontal wound healing fluid by ELISA were carried out for the detection of tissue-type plasminogen activator (t-PA), urokinase-type plasminogen activator (u-PA), and 2 plasminogen activator inhibitors (PAI-1 and PAI-2). RESULTS: During the early stages (days 1 to 3) of periodontal wound healing, PAI-1 and PAI-2 were found to be closely associated with the deposition of a fibrin clot in the gingival sulcus. These components were strongly associated with the infiltrating inflammatory cells around the fibrin clot. During days 3 to 7, u-PA, PAI-1, and PAI-2 were associated with cells (particularly monocytes/macrophages, fibroblasts, and endothelial cells) in the newly formed granulation tissue. During days 7 to 14, a new attachment apparatus was formed during which PAI-1, PAI-2, and u-PA were localized in both periodontal ligament fibroblasts (PDL) and epithelial cells at sites where these cells were attaching to the root surface. In the periodontal wound healing fluid, the concentration for t-PA increased and peaked during the first week. PAI-2 had a similar expression to t-PA, but at a lower level over the entire wound-healing period. CONCLUSIONS: These findings indicate that the plasminogen activator system is involved in the entire process of periodontal wound healing, in particular with the formation of fibrin matrix on the root surface and its replacement by granulation tissue, as well as the subsequent formation of the attachment of soft tissue to the root surface during the later stages of wound repair.
Resumo:
Nutritional practices that promote good health and optimal athletic performance are of interest to athletes, coaches, exercise scientists and dietitians. Probiotic supplements modulate the intestinal microbial flora and offer promise as a practical means of enhancing gut and immune function. The intestinal microbial flora consists of diverse bacterial species that inhabit the gastrointestinal tract. These bacteria are integral to the ontogeny and regulation of the immune system, protection of the body from injection, and maintenance of intestinal homeostasis. The interaction of the gut microbial flora with intestinal epithelial cells and immune cells exerts beneficial effects on the upper respiratory tract, skin and uro-genital tract. The capacity for probiotics to modulate perturbations in immune function after exercise highlight their potential for use in individuals exposed to high degrees of physical and environment stress. Future studies are required to address issues of dose-response in various exercise settings, the magnitude of species-specific effects, mechanisms of action and clinical outcomes in terms of health and performance.
Resumo:
Ureaplasma infection of the amniotic cavity is associated with adverse postnatal intestinal outcomes. We tested whether interleukin-1 (IL-1) signaling underlies intestinal pathology following ureaplasma exposure in fetal sheep. Pregnant ewes received intra-amniotic injections of ureaplasma or culture media for controls at 3, 7, and 14 d before preterm delivery at 124 d gestation (term 150 d). Intra-amniotic injections of recombinant human interleukin IL-1 receptor antagonist (rhIL-1ra) or saline for controls were given 3 h before and every 2 d after Ureaplasma injection. Ureaplasma exposure caused fetal gut inflammation within 7 d with damaged villus epithelium and gut barrier loss. Proliferation, differentiation, and maturation of enterocytes were significantly reduced after 7 d of ureaplasma exposure, leading to severe villus atrophy at 14 d. Inflammation, impaired development and villus atrophy of the fetal gut was largely prevented by intra-uterine rhIL-1ra treatment. These data form the basis for a clinical understanding of the role of ureaplasma in postnatal intestinal pathologies.
Resumo:
Ad[I/PPT-E1A] is an oncolytic adenovirus that specifically kills prostate cells via restricted replication by a prostate-specific regulatory element. Off-target replication of oncolytic adenoviruses would have serious clinical consequences. As a proposed ex vivo test, we describe the assessment of the specificity of Ad[I/PPT-E1A] viral cytotoxicity and replication in human nonprostate primary cells. Four primary nonprostate cell types were selected to mimic the effects of potential in vivo exposure to Ad[I/PPT-E1A] virus: bronchial epithelial cells, urothelial cells, vascular endothelial cells, and hepatocytes. Primary cells were analyzed for Ad[I/PPT-E1A] viral cytotoxicity in MTS assays, and viral replication was determined by hexon titer immunostaining assays to quantify viral hexon protein. The results revealed that at an extreme multiplicity of infection of 500, unlikely to be achieved in vivo, Ad[I/PPT-E1A] virus showed no significant cytotoxic effects in the nonprostate primary cell types apart from the hepatocytes. Transmission electron microscopy studies revealed high levels of Ad[I/PPT-E1A] sequestered in the cytoplasm of these cells. Adenoviral green fluorescent protein reporter studies showed no evidence for nuclear localization, suggesting that the cytotoxic effects of Ad[I/PPT-E1A] in human primary hepatocytes are related to viral sequestration. Also, hepatocytes had increased amounts of coxsackie adenovirus receptor surface protein. Active viral replication was only observed in the permissive primary prostate cells and LNCaP prostate cell line, and was not evident in any of the other nonprostate cells types tested, confirming the specificity of Ad[I/PPT-E1A]. Thus, using a relevant panel of primary human cells provides a convenient and alternative preclinical assay for examining the specificity of conditionally replicating oncolytic adenoviruses in vivo.
Resumo:
The proteins LMO4 and DEAF1 contribute to the proliferation of mammary epithelial cells. During breast cancer LMO4 is upregulated, affecting its interaction with other protein partners. This may set cells on a path to tumour formation. LMO4 and DEAF1 interact, but it is unknown how they cooperate to regulate cell proliferation. In this study, we identify a specific LMO4-binding domain in DEAF1. This domain contains an unstructured region that directly contacts LMO4, and a coiled coil that contains the DEAF1 nuclear export signal (NES). The coiled coil region can form tetramers and has the typical properties of a coiled coil domain. Using a simple cell-based assay, we show that LMO4 modulates the activity of the DEAF NES, causing nuclear accumulation of a construct containing the LMO4-interaction region of DEAF1.
Resumo:
Oral squamous cell carcinomas (OSCC) often arise from dysplastic lesions. The role of cancer stem cells in tumour initiation is widely accepted, yet the potential existence of pre-cancerous stem cells in dysplastic tissue has received little attention. Cell lines from oral diseases ranging in severity from dysplasia to malignancy provide opportunity to investigate the involvement of stem cells in malignant progression from dysplasia. Stem cells are functionally defined by their ability to generate hierarchical tissue structures in consortium with spatial regulation. Organotypic cultures readily display tissue hierarchy in vitro; hence, in this study, we compared hierarchical expression of stem cell-associated markers in dermis-based organotypic cultures of oral epithelial cells from normal tissue (OKF6-TERT2), mild dysplasia (DOK), severe dysplasia (POE-9n) and OSCC (PE/CA P J15). Expression of CD44, p75NTR, CD24 and ALDH was studied in monolayers by flow cytometry and in organotypic cultures by immunohistochemistry. Spatial regulation of CD44 and p75NTR was evident for organotypic cultures of normal (OKF6-TERT2) and dysplasia (DOK and POE-9n) but was lacking for OSCC (PE/CA PJ15)-derived cells. Spatial regulation of CD24 was not evident. All monolayer cultures exhibited CD44, p75NTR, CD24 antigens and ALDH activity (ALDEFLUOR® assay), with a trend towards loss of population heterogeneity that mirrored disease severity. In monolayer, increased FOXA1 and decreased FOXA2 expression correlated with disease severity, but OCT3/4, Sox2 and NANOG did not. We conclude that dermis-based organotypic cultures give opportunity to investigate the mechanisms that underlie loss of spatial regulation of stem cell markers seen with OSCC-derived cells.
Resumo:
We have compared the effects of different sterilization techniques on the properties of Bombyx mori silk fibroin thin films with the view to subsequent use for corneal tissue engineering. The transparency, tensile properties, corneal epithelial cell attachment and degradation of the films were used to evaluate the suitability of certain sterilization techniques including gamma-irradiation (in air or nitrogen), steam treatment and immersion in aqueous ethanol. The investigations showed that gamma-irradiation, performed either in air or in a nitrogen atmosphere, did not significantly alter the properties of films. The films sterilized by gamma-irradiation or by immersion in ethanol had a transparency greater than 98% and tensile properties comparable to human cornea and amniotic membrane, the materials of choice in the reconstruction of ocular surface. Although steam-sterilization produced stronger, stiffer films, they were less transparent, and cell attachment was affected by the variable topography of these films. It was concluded that gamma-irradiation should be considered to be the most suitable method for the sterilization of silk fibroin films, however, the treatment with ethanol is also an acceptable method.
Resumo:
Purpose: One of the challenges associated with cell-based therapies for repairing the retina is the development of suitable materials on which to grow and transplant retinal cells. Using the ARPE-19 cell line, we have previously demonstrated the feasibility of growing RPE-derived cells on membranes prepared from the silk protein fibroin. The present study was aimed at developing a porous, ultra-thin fibroin membrane that might better support development of apical-basal polarity in culture, and to extend this work to primary cultures of human RPE cells. Methods: Ultra-thin fibroin membranes were prepared using a highly polished casting table coated with Topas® (a cyclic olefin copolymer) and a 1:0.03 aqueous solution of fibroin and PEO (Mv 900 000 g/mol). Following drying, the membranes were water annealed to make them water-stable, washed in water to remove PEO, sterilised by treatment with 95% ethanol, and washed extensively in saline. Primary cultures containing human RPE cells were established from donor posterior eye cups and maintained in DMEM/F12 medium supplemented with 10% fetal bovine serum and antibiotics. First passage cultures were seeded onto fibroin membranes pre-coated with vitronectin and grown for 6 weeks in medium supplemented with 1% serum. Comparative cultures were established on porous 1.0 µm pore PET membrane (Millipore) and using ARPE-19 cells. Results: The fibroin membranes displayed an average thickness of 3 µm and contained numerous dimples/pore-like structures of up to 3-5 µm in diameter. The primary cultures predominantly contained pigmented epithelial cells, but mesenchymal cells (presumed fibroblasts) were also often present. Passaged cultures appeared to attach equally well to either fibroin or PET membranes. Over time cells on either material adopted a more cobblestoned morphology. Conclusions: Progress has been made towards developing a porous ultra-thin fibroin membrane that supports cultivation of RPE cells. Further studies are required to determine the degree of membrane permeability and RPE polarity.
Resumo:
Background & Aims: Peroxisome proliferator-activated receptor (PPAR) γ is a transcription factor, highly expressed in colonic epithelial cells, adipose tissue and macrophages, with an important role in the regulation of inflammatory pathways. The common PPARγ variants C161T and Pro12Ala have recently been associated with Ulcerative Colitis (UC) and an extensive UC phenotype respectively, in a Chinese population. PPARγ Pro12Ala variant homozygotes appear to be protected from the development of Crohn's disease (CD) in European Caucasians. Methods: A case-control study was performed for both variants (CD n=575, UC n=306, Controls n=360) using a polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis in an Australian IBD cohort. A transmission disequilibrium test was also performed using CD trios for the PPARγ C161T variant. Genotype-phenotype analyses were also undertaken. Results: There was no significant difference in genotype distribution data or allele frequency between CD and UC patients and controls. There was no difference in allele transmission for the C161T variant. No significant relationship between the variants and disease location was observed. Conclusions: We were unable to replicate in a Caucasian cohort the recent association between PPARγ C161T and UC or between PPARγ Pro12Ala and an extensive UC phenotype in a Chinese population. There are significant ethnic differences in genetic susceptibility to IBD and its phenotypic expression.
Resumo:
Chlamydia trachomatis infections of the male and female reproductive tracts are the world's leading sexually transmitted bacterial disease, and can lead to damaging pathology, scarring and infertility. The resolution of chlamydial infection requires the development of adaptive immune responses to infection, and includes cell-mediated and humoral immunity. Whilst cluster of differentiation (CD)4+ T cells are known to be essential in clearance of infection [1], they are also associated with immune cell infiltration, autoimmunity and infertility in the testes [2-3]. Conversely, antibodies are less associated with inflammation, are readily transported into the reproductive tracts, and can offer lumenal neutralization of chlamydiae prior to infection. Antibodies, or immunoglobulins (Ig), play a supportive role in the resolution of chlamydial infections, and this thesis sought to define the function of IgA and IgG, against a variety of chlamydial antigens expressed during the intracellular and extracellular stages of the chlamydial developmental cycle. Transport of IgA and IgG into the mucosal lumen is facilitated by receptor-mediated transcytosis yet the expression profile (under normal conditions and during urogenital chlamydial infection) of the polymeric immunoglobulin receptor (pIgR) and the neonatal Fc receptor (FcRn) remains unknown. The expression profile of pIgR and FcRn in the murine male reproductive tract was found to be polarized to the lower and upper reproductive tract tissues respectively. This demonstrates that the two receptors have a tissue tropism, which must be considered when targeting pathogens that colonize different sites. In contrast, the expression of pIgR and FcRn in the female mouse was found to be distributed in both the upper and lower reproductive tracts. When urogenitally infected with Chlamydia muridarum, both male and female reproductive tracts up-regulated expression of pIgR and down-regulated expression of FcRn. Unsurprisingly, the up-regulation of pIgR increased the concentration of IgA in the lumen. However, down-regulation of FcRn, prevented IgG uptake and led to an increase or pooling of IgG in lumenal secretions. As previous studies have identified the importance of pIgR-mediated delivery of IgA, as well as the potential of IgA to bind and neutralize intracellular pathogens, IgA against a variety of chlamydial antigens was investigated. The protection afforded by IgA against the extracellular antigen major outer membrane protein (MOMP), was found to be dependent on pIgR expression in vitro and in vivo. It was also found that in the absence of pIgR, no protection was afforded to mice previously immunized with MOMP. The protection afforded from polyclonal IgA against the intracellular chlamydial antigens; inclusion membrane protein A (IncA), inclusion membrane proteins (IncMem) and secreted chlamydial protease-like activity factor (CPAF) were produced and investigated in vitro. Antigen-specific intracellular IgA was found to bind to the respective antigen within the infected cell, but did not significantly reduce inclusion formation (p > 0.05). This suggests that whilst IgA specific for the selected antigens was transported by pIgR to the chlamydial inclusion, it was unable to prevent growth. Similarly, immunization of male mice with intracellular chlamydial antigens (IncA or IncMem), followed by depletion CD4+ T cells, and subsequent urogenital C. muridarum challenge, provided minimal pIgR-mediated protection. Wild type male mice immunized with IncA showed a 57 % reduction (p < 0.05), and mice deficient in pIgR showed a 35 % reduction (p < 0.05) in reproductive tract chlamydial burden compared to control antigen, and in the absence of CD4+ T cells. This suggests that pIgR and secretory IgA (SIgA) were playing a protective role (21 % pIgR-mediated) in unison with another antigen-specific immune mechanism (36 %). Interestingly, IgA generated during a primary respiratory C. muridarum infection did not provide a significant amount of protection to secondary urogenital C. muridarum challenge. Together, these data suggest that IgA specific for an extracellular antigen (MOMP) can play a strong protective role in chlamydial infections, and that IgA targeting intracellular antigens is also effective but dependent on pIgR expression in tissues. However, whilst not investigated here, IgA targeting and blocking other intracellular chlamydial antigens, that are more essential for replication or type III secretion, may be more efficacious in subunit vaccines. Recently, studies have demonstrated that IgG can neutralize influenza virus by trafficking IgG-bound virus to lysosomes [4]. We sought to determine if this process could also traffic chlamydial antigens for degradation by lysosomes, despite Chlamydia spp. actively inhibiting fusion with the host endocytic pathway. As observed in pIgR-mediated delivery of anti-IncA IgA, FcRn similarly transported IgG specific for IncA which bound the inclusion membrane. Interestingly, FcRn-mediated delivery of anti-IncA IgG significantly decreased inclusion formation by 36 % (p < 0.01), and induced aberrant inclusion morphology. This suggests that unlike IgA, IgG can facilitate additional host cellular responses which affect the intracellular niche of chlamydial growth. Fluorescence microscopy revealed that IgG also bound the inclusion, but unlike influenza studies, did not induce the recruitment of lysosomes. Notably, anti-IncA IgG recruited sequestosomes to the inclusion membrane, markers of the ubiquitin/proteasome pathway and major histocompatibility complex (MHC) class I loading. To determine if the protection against C. muridarum infection afforded by IncA IgG in vitro translated in vivo, wild type mice and mice deficient in functional FcRn and MHC-I, were immunized, depleted of CD4+, and urogenitally infected with C. muridarum. Unlike in pIgR-deficient mice, the protection afforded from IncA immunization was completely abrogated in mice lacking functional FcRn and MHC-I/CD8+. Thus, both anti-IncA IgA and IgG can bind the inclusion in a pIgR and FcRn-mediated manner, respectively. However, only IgG mediates a higher reduction in chlamydial infection in vitro and in vivo suggesting more than steric blocking of IncA had occurred. Unlike anti-MOMP IgA, which reduced chlamydial infection of epithelial cells and male mouse tissues, IgG was found to enhance infectivity in vitro, and in vivo. Opsonization of EBs with MOMP-IgG enhanced inclusion formation of epithelial cells in a MOMP-IgG dose-dependent and FcRn-dependent manner. When MOMP-IgG opsonized EBs were inoculated into the vagina of female mice, a small but non-significant (p > 0.05) enhancement of cervicovaginal C. muridarum shedding was observed three days post infection in mice with functional FcRn. Interestingly, infection with opsonized EBs reduced the intensity of the peak of infection (day six) but protracted the duration of infection by 60 % in wild type mice only. Infection with EBs opsonized in IgG also significantly increased (p < 0.05) hydrosalpinx formation in the oviducts and induced lymphocyte infiltration uterine horns. As MOMP is an immunodominant antigen, and is widely used in vaccines, the ability of IgG specific to extracellular chlamydial antigens to enhance infection and induce pathology needs to be considered. Together, these data suggest that immunoglobulins play a dichotomous role in chlamydial infections, and are dependent on antigen specificity, FcRn and pIgR expression. FcRn was found to be highly expressed in upper male reproductive tract, whilst pIgR was dominantly expressed in the lower reproductive tract. Conversely, female mice expressed FcRn and pIgR in both the lower and upper reproductive tracts. In response to a normal chlamydial infection, pIgR is up-regulated increasing secretory IgA release, but FcRn is down-regulated preventing IgG uptake. Similarly to other studies [5-6], we demonstrate that IgA and IgG generated during primary chlamydial infections plays a minor role in recall immunity, and that antigen-specific subunit vaccines can offer more protection. We also show that both IgA and IgG can be used to target intracellular chlamydial antigens, but that IgG is more effective. Finally, IgA against the extracellular antigen MOMP can afford protection, whist IgG plays a deleterious role by increasing infectivity and inducing damaging immunopathology. Further investigations with additional antigens or combination subunit vaccines will enhance our understanding the protection afforded by antibodies against intracellular and extracellular pathogenic antigens, and help improve the development of an efficacious chlamydial vaccine.