175 resultados para CLAY NANOPARTICLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic performance of Fe–Ni/PG (PG: palygorskite) catalysts pre-calcined and reduced at 500 ◦C for catalytic decomposition of tar derived through rice hull gasification was investigated. The materials were characterized by using X-ray diffraction, hydrogen temperature reduction, and transmission electron microscopy. The results showed that ferrites with spinel structure ((Fe, Ni)3O4) were formed during preparation of bimetallic systems during calcination and reduction of the precursors (Fe–Ni/PG catalysts) and NiO metal oxide particles were formed over Fe6–Ni9/PG catalyst. The obtained experimental data showed that Fe–Ni/PG catalysts had greater catalytic activity than natural PG. Tar removal using Fe6–Ni9/PG catalyst was as high as Fe10–Ni6/PG catalyst (99.5%). Fe6–Ni9/PG showed greater catalytic activity with greater H2 yield and showed stronger resistance to carbon deposition, attributed to the presence of NiO nanoparticles. Thus, the addition of nickel and iron oxides played an important role in catalytic cracking of rice hull biomass tar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a series of partial phase transitions, an effective photocatalyst with fibril morphology was prepared. The catalytic activities of these materials were tested against phenol and herbicide in water. Both H-titanate and TiO2-(B) fibres decorated with anatase nanocrystals were studied. It was found that anatase coated TiO2-(B) fibres prepared by a 45 h hydrothermal treatment followed by calcination were not only superior photocatalysts but could also be readily separated from the slurry after photocatalytic reactions due to its fibril morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic decomposition is a very attractive way to convert tar components into H2, CO and other useful chemicals. The performance of Fe3Ni8/PG (palygorskite, PG) reduced in hydrogen at different temperatures for the catalytic decomposition of benzene has been assessed. Benzene was used as the model biomass tar. The effects of calcination atmosphere, temperatures and benzene concentration on catalytic cracking of benzene were measured. The results of XRD (X-Ray Diffraction), TEM (Transmission Electron Microscope), TPR (Temperature Program Reduction), TPSR (Temperature Program Surface Reduction), TC (Total Carbon), the reactivity component and reaction mechanism over Fe3Ni8/PG for catalytic cracking of benzene are discussed. The results showed particles of awaruite (Fe, Ni) about 2–30 nm were found on the surface of palygorskite by TEM when the calcination temperature was 600 °C. Particles with size smaller than 30 nm were obtained on all prepared Fe3Ni8/PG catalysts as shown by XRD. The nanoparticles proved to be the reactive component for catalytic cracking of benzene and the increase of active particle size caused the decrease in the reactivity of Fe3Ni8/PG. Fe3Ni8/PG annealed in hydrogen at 600 °C was proved to have the best reactivity in experiments (45% hydrogen yield). High concentration benzene (448 g/m3) accelerated the formation of carbon deposition. However, iron oxide decreases carbon deposition and increases the stability of catalyst for catalytic cracking of benzene. The application of Fe3Ni8/PG catalysts was proved a very effective catalyst for the catalytic cracking of benzene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed mineralogical studies of the matrix and fracture-fill materials of a large number of samples from the Rustler Formation have been carried out using x-ray diffraction, high-resolution transmission electron microscopy, electron microprobe analysis, x-ray fluorescence, and atomic absorption spectrophotometry. These analyses indicate the presence of four clay minerals: interstratified chlorite/saponite, illite, chlorite, and serpentine. Corrensite (regularly stratified chlorite/saponite) is the dominant clay mineral in samples from the Culebra dolomite and two shale layers of the lower unnamed member of the Rustler Formation. Within other layers of the Rustler Formation, disordered mixed chlorite/saponite is usually the most abundant clay mineral. Studies of the morphology and composition of clay crystallites suggest that the corrensite was formed by the alteration of detrital dioctahedral smectite in magnesium-rich pore fluids during early diagenesis of the Rustler Formation. This study provides initial estimates of the abundance and nature of the clay minerals in the Culebra dolomite in the vicinity of the Waste Isolation Pilot Plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Response to discussion on Gallage CPK, Chan D and Kodilara J (2012) Response of a plastic pipe buried in expansive clay. Proceedings of ICE, Geotechnical Engineering, Vol 164, February 2012, Issue GE1, pages 45-57.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—“Properties of Nanoparticle Populations” of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 “Techniques for characterizing size distribution of airborne nanoparticles”. Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2–46.6 nm and 80.2–89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generating nano-sized materials of a controlled size and chemical composition is essential for the manufacturing of materials with enhanced properties on an industrial scale, as well as for research purposes, such as toxicological studies. Among the generation methods for airborne nanoparticles (also known as aerosolisation methods), liquid-phase techniques have been widely applied due to the simplicity of their use and their high particle production rate. The use of a collison nebulizer is one such technique, in which the atomisation takes place as a result of the liquid being sucked into the air stream and injected toward the inner walls of the nebulizer reservoir via nozzles, before the solution is dispersed. Despite the above-mentioned benefits, this method also falls victim to various sources of impurities (Knight and Petrucci 2003; W. LaFranchi, Knight et al. 2003). Since these impurities can affect the characterization of the generated nanoparticles, it is crucial to understand and minimize their effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nanoparticles size is one of their key physical characteristics that can affect their fate in a human’s respiratory tract (in case of inhalation) and also in the environment. Hence, measuring the size distribution of nanoparticles is absolutely essential and contributes greatly to their characterization. For years, Scanning Mobility Particle Sizers (SMPS), which rely on measuring the electrical mobility diameter of particles, have been used as one of the most reliable real-time instruments for the size distribution measurement of nanoparticles. Despite its benefits, this instrument has some drawbacks, including equivalency problems for non-spherical particles (i.e. assuming a non-spherical particle is equal to a spherical particle of diameter d due to the same electrical mobility), as well as limitations in terms of its use in workplaces, because of its large size and the complexity of its operation...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past ten years, scaled-up utilisation of a previously under-exploited zeolite, Zeolite N1, has been demonstrated for selective ion exchange of ammonium and other ions in aqueous environments. As with many zeolite syntheses, the required source material should contain predictable levels of aluminium and silicon and, for full-scale industrial applications, kaolin and/or montmorillonite serve such a purpose. Field, pilot and commercial scale trials of kaolin-derived Zeolite N have focused on applications in agriculture and water treatment as these sectors are primary producers or users of ammonium. The format for the material – as fine powders, granules or extrudates – depends on the specific application albeit each has been evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is an innovative study for organic synthesis using supported gold nanoparticles as photocatalysts under visible light irradiation. It especially examines a novel green process for efficient hydroamination of alkynes with amines. The investigation of other traditional reduction and oxidation reactions also adds significantly to the knowledge of gold nanoparticles and titania nanofibres as photocatalysts for organic synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particles having at least regions of at least one metal oxide having nano-sized grains are produced by providing particles of a material having an initial, nonequiaxed particle shape, prepg. a mixt. of these particles and at last one metal oxide precursor, and treating the mixt. such that the precursor reacts with the particles. The process can be a co-pptn. process, sol-gel synthesis, micro-emulsion method, surfactant-based process, or a process that uses polymers. Complex metal oxide nanoparticles are produced by (a) prepg. a soln. contg. metal cations, (b) mixing the soln. with a surfactant to form micelles within the soln., and (c) heating the micellar liq. to form metal oxide and to remove the surfactant. The formed metal oxide particles have essentially the same morphol. (particle size and shape) as the initial morphol. of the material particles provided. [on SciFinder(R)]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical and electrocatalytic behaviour of silver nanoprisms, nanospheres and nanocubes of comparable size in an alkaline medium have been investigated to ascertain the shape dependent behaviour of silver nanoparticles, which are an extensively studied nanomaterial. The nanomaterials were synthesised using chemical methods and characterised with UV-visible spectroscopy, transmission electron microscopy and X-ray diffraction. The nanomaterials were immobilised on a substrate glassy carbon electrode and characterised by cyclic voltammetry for their surface oxide electrochemistry. The electrocatalytic oxidation of hydrazine and formaldehyde and the reduction of hydrogen peroxide were studied by performing cyclic voltammetric and chronoamperometric experiments for both the nanomaterials and a smooth polycrystalline macrosized silver electrode. In all cases the nanomaterials showed enhanced electrocatalytic activity over the macro-silver electrode. Significantly, the silver nanoprisms that are rich in hcp lamellar defects showed greater activity than nanospheres and nanocubes for all reactions studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a rapid synthesis of gold nanoparticles using hydroquinone as a reducing agent under acidic conditions without the need for precursor seed particles. The nanoparticle formation process is facilitated by the addition of NaOH to a solution containing HAuCl4 and hydroquinone to locally change the pH; this enhances the reducing capability of hydroquinone to form gold nucleation centres, after which further growth of gold can take place through an autocatalytic mechanism. The stability of the nanoparticles is highly dependent on the initial solution pH, and both the concentration of added NaOH and hydroquinone present in solution. The gold nanoparticles were characterized by UV–visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, atomic force microscopy, dynamic light scattering, and zeta potential measurements. It was found that under optimal conditions that stable aqueous suspensions of 20 nm diameter nanoparticles can be achieved where benzoquinone, the oxidized product of hydroquinone, acts as a capping agent preventing nanoparticles aggregation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate aqueous phase biosynthesis of phase-pure metallic copper nanoparticles (CuNPs) using a silver resistant bacterium Morganella morganii. This is particularly important considering that there has been no report that demonstrates biosynthesis and stabilization of pure copper nanoparticles in the aqueous phase. Electrochemical analysis of bacterial cells exposed to Cu2+ ions provides new insights into the mechanistic aspect of Cu2+ ion reduction within the bacterial cell and indicates a strong link between the silver and copper resistance machinery of bacteria in the context of metal ion reduction. The outcomes of this study take us a step closer towards designing rational strategies for biosynthesis of different metal nanoparticles using microorganisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charge transfer-mediated surface enhanced Raman scattering (SERS) of crystal violet (CV) molecules that were chemically conjugated between partially polarized silver nanoparticles and optically smooth gold and silver substrates has been studied under off-resonant conditions. Tyrosine molecules were used as a reducing agent to convert silver ions into silver nanoparticles where oxidised tyrosine caps the silver nanoparticle surface with its semiquinone group. This binding through the quinone group facilitates charge transfer and results in partially oxidised silver. This establishes a chemical link between the silver nanoparticles and the CV molecules, where the positively charged central carbon of CV molecules can bind to the terminal carboxylate anion of the oxidised tyrosine molecules. After drop casting Ag nanoparticles bound with CV molecules it was found that the free terminal amine groups tend to bind with the underlying substrates. Significantly, only those CV molecules that were chemically conjugated between the partially polarised silver nanoparticles and the underlying gold or silver substrates were found to show SERS under off-resonant conditions. The importance of partial charge transfer at the nanoparticle/capping agent interface and the resultant conjugation of CV molecules to off resonant SERS effects was confirmed by using gold nanoparticles prepared in a similar manner. In this case the capping agent binds to the nanoparticle through the amine group which does not facilitate charge transfer from the gold nanoparticle and under these conditions SERS enhancement in the sandwich configuration was not observed.