93 resultados para CFRP, carbonio, FEM, sedili, elicotteri ultraleggeri


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exchange of physical forces in both cell-cell and cell-matrix interactions play a significant role in a variety of physiological and pathological processes, such as cell migration, cancer metastasis, inflammation and wound healing. Therefore, great interest exists in accurately quantifying the forces that cells exert on their substrate during migration. Traction Force Microscopy (TFM) is the most widely used method for measuring cell traction forces. Several mathematical techniques have been developed to estimate forces from TFM experiments. However, certain simplifications are commonly assumed, such as linear elasticity of the materials and/or free geometries, which in some cases may lead to inaccurate results. Here, cellular forces are numerically estimated by solving a minimization problem that combines multiple non-linear FEM solutions. Our simulations, free from constraints on the geometrical and the mechanical conditions, show that forces are predicted with higher accuracy than when using the standard approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluid–Structure Interaction (FSI) problem is significant in science and engineering, which leads to challenges for computational mechanics. The coupled model of Finite Element and Smoothed Particle Hydrodynamics (FE-SPH) is a robust technique for simulation of FSI problems. However, two important steps of neighbor searching and contact searching in the coupled FE-SPH model are extremely time-consuming. Point-In-Box (PIB) searching algorithm has been developed by Swegle to improve the efficiency of searching. However, it has a shortcoming that efficiency of searching can be significantly affected by the distribution of points (nodes in FEM and particles in SPH). In this paper, in order to improve the efficiency of searching, a novel Striped-PIB (S-PIB) searching algorithm is proposed to overcome the shortcoming of PIB algorithm that caused by points distribution, and the two time-consuming steps of neighbor searching and contact searching are integrated into one searching step. The accuracy and efficiency of the newly developed searching algorithm is studied on by efficiency test and FSI problems. It has been found that the newly developed model can significantly improve the computational efficiency and it is believed to be a powerful tool for the FSI analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Portable water-filled barriers (PWFBs) are roadside appurtenances that are used to prevent errant vehicles from penetrating into temporary construction zones on roadways. A numerical model of the composite PWFB, consisting of a plastic shell, steel frame, water and foam was developed and validated against results from full scale experimental tests. This model can be extended to larger scale impact cases, specifically ones that include actual vehicle models. The cost-benefit of having a validated numerical model is significant and this allows the road barrier designer to conduct extensive tests via numerical simulations prior to standard impact tests Effects of foam cladding as additional energy absorption material in the PWFB was investigated. Different types of foam were treated and it was found that XPS foam was the most suitable foam type. Results from this study will aid PWFB designers in developing new generation of roadside structures which will provide enhanced road safety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant tissue has a complex cellular structure which is an aggregate of individual cells bonded by middle lamella. During drying processes, plant tissue undergoes extreme deformations which are mainly driven by moisture removal and turgor loss. Numerical modelling of this problem becomes challenging when conventional grid-based modelling techniques such as Finite Element Methods (FEM) and Finite Difference Methods (FDM) have grid-based limitations. This work presents a meshfree approach to model and simulate the deformations of plant tissues during drying. This method demonstrates the fundamental capabilities of meshfree methods in handling extreme deformations of multiphase systems. A simplified 2D tissue model is developed by aggregating individual cells while accounting for the stiffness of the middle lamella. Each individual cell is simply treated as consisting of two main components: cell fluid and cell wall. The cell fluid is modelled using Smoothed Particle Hydrodynamics (SPH) and the cell wall is modelled using a Discrete Element Method (DEM). During drying, moisture removal is accounted for by reduction of cell fluid and wall mass, which causes local shrinkage of cells eventually leading to tissue scale shrinkage. The cellular deformations are quantified using several cellular geometrical parameters and a favourably good agreement is observed when compared to experiments on apple tissue. The model is also capable of visually replicating dry tissue structures. The proposed model can be used as a step in developing complex tissue models to simulate extreme deformations during drying.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is a spinal deformity, which may require surgical correction by attaching rods to the patient’s spine using screws inserted into the vertebrae. Complication rates for deformity correction surgery are unacceptably high. Determining an achievable correction without overloading the adjacent spinal tissues or implants requires an understanding of the mechanical interaction between these components. We have developed novel patient specific modelling software to create individualized finite element models (FEM) representing the thoracolumbar spine and ribcage of scoliosis patients. We are using these models to better understand the biomechanics of spinal deformity correction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer modelling has been used extensively in some processes in the sugar industry to achieve significant gains. This paper reviews the investigations carried out over approximately the last twenty five years,including the successes but also areas where problems and delays have been encountered. In that time the capability of both hardware and software have increased dramatically. For some processes such as cane cleaning, cane billet preparation, and sugar drying, the application of computer modelling towards improved equipment design and operation has been quite limited. A particular problem has been the large number of particles and particle interactions in these applications, which, if modelled individually, is computationally very intensive. Despite the problems, some attempts have already been made and knowledge gained on tackling these issues. Even if the detailed modelling is wanting, a model can provide some useful insights into the processes. Some options to attack these more intensive problems include the use of commercial software packages, which are usually very robust and allow the addition of user-supplied subroutines to adapt the software to particular problems. Suppliers of such software usually charge a fee per CPU licence, which is often problematic for large problems that require the use of many CPUs. Another option to consider is using open source software that has been developed with the capability to access large parallel resources. Such software has the added advantage of access to the full internal coding. This paper identifies and discusses the detail of software options with the potential capability to achieve improvements in the sugar industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A better understanding of the behaviour of prepared cane and bagasse, and the ability to model the mechanical behaviour of bagasse as it is squeezed in a milling unit to extract juice, would help identify how to improve the current process, for example to reduce final bagasse moisture. Previous investigations have proven that juice flow through bagasse obeys Darcy’s permeability law, that the grip of the rough surface of the grooves on the bagasse can be represented by the Mohr-Coulomb failure criterion for soils, and that the internal mechanical behaviour of the bagasse is critical state behaviour similar to that for sand and clay. Current Finite Element Models (FEM) available in commercial software have adequate permeability models. However, no commercially available software seems to contain an adequate mechanical model for bagasse. The same software contains a few material models for soil and other materials, while the coding of hundreds of developed models for soil and other materials remains confidential at universities and government research centres. Progress has been made in the last ten years towards implementing a mechanical model for bagasse in finite element software code. This paper builds on that progress and carries out a further step towards obtaining an adequate material model. The fifth and final loading condition outlined previously, shearing of heavily over-consolidated bagasse, is outlined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hardness is defined as the resistance and load bearing capability of an item. Seat hardness is an important factor in seat comfort as it impacts on a number of variables including seat postural stability, postural control, pressure comfort as a result of tissue deformation, and occupant vibration. The development of the test rig further on described in this report will enable Futuris Automotive to develop their current comfort testing procedures and thus increase the comfort of their automotive seats. The test rig consists of a buttock indenter, which produces a controlled application of a load to a seat cushion with measured displacement via a linear indenter. In parallel with the physical property presented, an analytic (software) finite element tool was developed to simulate seat pressure in an ANSYS Workbench V13 environment. This report also details the procedure required for Futuris to accurately and precisely measure cushion hardness which will enhance their comfort testing procedures, product development and target settings. The report is divided into three main sections: 1 Test equipment specification (M4) - A detailed description of the process used to build the seat cushion indenter and a description of the indenter mechanical structure and electrical functionality (chapter 2). 2 Analytic tool specification (M5) – A detailed description of the CAE seat and indenter software tool, developed as a finite element model (FEM) under ANSYS Workbench V13 to simulate indentation of a physical seat cushion similar to the hardware tool (chapter 3). 3 Product Development and Comfort Design Procedure (M6) - The cushion hardness testing procedure to be used with the physical indenter. This milestone is partially incomplete, as it covers a description of the test procedure to be applied, however not the operating system (control software) required to operate the physical property (chapter 4). Although outside the scope of this project, this report also details the testing procedures required to measure overall seatback hardness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of circular hollow steel members has attracted a great deal of attention during past few years because of having excellent structural properties, aesthetic appearance, corrosion and fire protection capability. However, no one can deny the structural deficiency of such structures due to reduction of strength when they are exposed to severe environmental conditions such as marine environment, cold and hot weather. Hence strengthening and retrofitting of structural steel members is now very imperative. This paper presents the findings of a research program that was conducted to study the bond durability of carbon fibre-reinforced polymer (CFRP) strengthened steel tubular members under cold weather and tested under four-point bending. Six number of CFRP-strengthened specimens and one unstrengthened specimen were considered in this program. The three specimens having sand blasted surface to be strengthened was pre-treated with MBrace primer and other three were remained untreated and then cured under ambient temperature at least four weeks and cold weather (3 C) for three and six months period of time. Quasi-static tests were then performed on beams to failure under four-point bending. The structural response of each specimen was predicted in terms of failure load, mid-span deflection, composite beam behaviour and failure mode. The research outcomes show that the cold weather immersion had an adverse effect on durability of CFRP-strengthened steel structures. Moreover, the epoxy based adhesion promoter was found to enhance the bond durability in plastic range. The analytical models presented in this study were found to be in good agreement in terms of predicting ultimate load and deflection. Finally, design factors are proposed to address the short-terms durability performance under cold weather.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this paper is to utilize a poroviscohyperelastic (PVHE) model which is developed based on the porohyperelastic (PHE) model to explore the mechanical deformation properties of single chondrocytes. Both creep and relaxation responses are investigated by using FEM models of micropipette aspiration and AFM experiments, respectively. The newly developed PVHE model is compared thoroughly with the SnHS and PHE models. It has been found that the PVHE can accurately capture both creep and stress relaxation behaviors of chondrocytes better than other two models. Hence, the PVHE is a promising model to investigate mechanical properties of single chondrocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dried plant food materials are one of the major contributors to the global food industry. Widening the fundamental understanding on different mechanisms of food material alterations during drying assists the development of novel dried food products and processing techniques. In this regard, case hardening is an important phenomenon, commonly observed during the drying processes of plant food materials, which significantly influences the product quality and process performance. In this work, a recent meshfree-based numerical model of the authors is further improved and used to simulate the influence of case hardening on shrinkage characteristics of plant tissues during drying. In order to model fluid and wall mechanisms in each cell, Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM) are used. The model is fundamentally more capable of simulating large deformation of multiphase materials, when compared with conventional grid-based modelling techniques such as Finite Element Methods (FEM) or Finite Difference Methods (FDM). Case hardening is implemented by maintaining distinct moisture levels in the different cell layers of a given tissue. In order to compare and investigate different factors influencing tissue deformations under case hardening, four different plant tissue varieties (apple, potato, carrot and grape) are studied. The simulation results indicate that the inner cells of any given tissue undergo limited shrinkage and cell wall wrinkling compared to the case hardened outer cell layers of the tissues. When comparing unique deformation characteristics of the different tissues, irrespective of the normalised moisture content, the cell size, cell fluid turgor pressure and cell wall characteristics influence the tissue response to case hardening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By taking the advantage of the excellent mechanical properties and high specific surface area of graphene oxide (GO) sheets, we develop a simple and effective strategy to improve the interlaminar mechanical properties of carbon fiber reinforced plastic (CFRP) laminates. With the incorporation of graphene oxide reinforced epoxy interleaf into the interface of CFRP laminates, the Mode-I fracture toughness and resistance were greatly increased. The experimental results of double cantilever beam (DCB) tests demonstrated that, with 2 g/m2 addition of GO, the Mode-I fracture toughness and resistance of the specimen increase by 170.8% and 108.0%, respectively, compared to those of the plain specimen. The improvement mechanisms were investigated by the observation of fracture surface with scanning electron microscopies. Moreover, finite element analyses were performed based on the cohesive zone model to verify the experimental fracture toughness and to predict the interfacial tensile strength of CFRP laminates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study design Retrospective validation study. Objectives To propose a method to evaluate, from a clinical standpoint, the ability of a finite-element model (FEM) of the trunk to simulate orthotic correction of spinal deformity and to apply it to validate a previously described FEM. Summary of background data Several FEMs of the scoliotic spine have been described in the literature. These models can prove useful in understanding the mechanisms of scoliosis progression and in optimizing its treatment, but their validation has often been lacking or incomplete. Methods Three-dimensional (3D) geometries of 10 patients before and during conservative treatment were reconstructed from biplanar radiographs. The effect of bracing was simulated by modeling displacements induced by the brace pads. Simulated clinical indices (Cobb angle, T1–T12 and T4–T12 kyphosis, L1–L5 lordosis, apical vertebral rotation, torsion, rib hump) and vertebral orientations and positions were compared to those measured in the patients' 3D geometries. Results Errors in clinical indices were of the same order of magnitude as the uncertainties due to 3D reconstruction; for instance, Cobb angle was simulated with a root mean square error of 5.7°, and rib hump error was 5.6°. Vertebral orientation was simulated with a root mean square error of 4.8° and vertebral position with an error of 2.5 mm. Conclusions The methodology proposed here allowed in-depth evaluation of subject-specific simulations, confirming that FEMs of the trunk have the potential to accurately simulate brace action. These promising results provide a basis for ongoing 3D model development, toward the design of more efficient orthoses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION Adolescent idiopathic scoliosis (AIS) is a spinal deformity, which may require surgical correction by attaching rods to the patient’s spine using screws inserted into the vertebrae. Complication rates for deformity correction surgery are unacceptably high. Determining an achievable correction without overloading the adjacent spinal tissues or implants requires an understanding of the mechanical interaction between these components. Our novel patient specific modelling software creates individualized finite element models (FEM) representing the thoracolumbar spine and ribcage of scoliosis patients. We have recently applied the model to investigate the influence of increasing magnitudes of surgically applied corrective force on predicted deformity correction...