180 resultados para Building blocks in elastomer composite fabrication
Resumo:
A fundamental part of many authentication protocols which authenticate a party to a human involves the human recognizing or otherwise processing a message received from the party. Examples include typical implementations of Verified by Visa in which a message, previously stored by the human at a bank, is sent by the bank to the human to authenticate the bank to the human; or the expectation that humans will recognize or verify an extended validation certificate in a HTTPS context. This paper presents general definitions and building blocks for the modelling and analysis of human recognition in authentication protocols, allowing the creation of proofs for protocols which include humans. We cover both generalized trawling and human-specific targeted attacks. As examples of the range of uses of our construction, we use the model presented in this paper to prove the security of a mutual authentication login protocol and a human-assisted device pairing protocol.
Resumo:
The notion of plaintext awareness ( PA ) has many applications in public key cryptography: it offers unique, stand-alone security guarantees for public key encryption schemes, has been used as a sufficient condition for proving indistinguishability against adaptive chosen-ciphertext attacks ( IND-CCA ), and can be used to construct privacy-preserving protocols such as deniable authentication. Unlike many other security notions, plaintext awareness is very fragile when it comes to differences between the random oracle and standard models; for example, many implications involving PA in the random oracle model are not valid in the standard model and vice versa. Similarly, strategies for proving PA of schemes in one model cannot be adapted to the other model. Existing research addresses PA in detail only in the public key setting. This paper gives the first formal exploration of plaintext awareness in the identity-based setting and, as initial work, proceeds in the random oracle model. The focus is laid mainly on identity-based key encapsulation mechanisms (IB-KEMs), for which the paper presents the first definitions of plaintext awareness, highlights the role of PA in proof strategies of IND-CCA security, and explores relationships between PA and other security properties. On the practical side, our work offers the first, highly efficient, general approach for building IB-KEMs that are simultaneously plaintext-aware and IND-CCA -secure. Our construction is inspired by the Fujisaki-Okamoto (FO) transform, but demands weaker and more natural properties of its building blocks. This result comes from a new look at the notion of γ -uniformity that was inherent in the original FO transform. We show that for IB-KEMs (and PK-KEMs), this assumption can be replaced with a weaker computational notion, which is in fact implied by one-wayness. Finally, we give the first concrete IB-KEM scheme that is PA and IND-CCA -secure by applying our construction to a popular IB-KEM and optimizing it for better performance.
Resumo:
Bone, a hard biological material, possesses a combination of high stiffness and toughness, even though the main basic building blocks of bone are simply mineral platelets and protein molecules. Bone has a very complex microstructure with at least seven hierachical levels. This unique material characteristic attracts great attention, but the deformation mechanisms in bone have not been well understood. Simulation at nano-length scale such as molecular dynamics (MD) is proven to be a powerful tool to investigate bone nanomechanics for developing new artificial biological materials. This study focuses on the ultra large and thin layer of extrafibrillar protein matrix (thickness = ~ 1 nm) located between mineralized collagen fibrils (MCF). Non-collagenous proteins such as osteopontin (OPN) can be found in this protein matrix, while MCF consists mainly of hydroxyapatite (HA) nanoplatelets (thickness = 1.5 – 4.5 nm). By using molecular dynamics method, an OPN peptide was pulled between two HA mineral platelets with water in presence. Periodic boundary condition (PBC) was applied. The results indicate that the mechanical response of OPN peptide greatly depends on the attractive electrostatics interaction between the acidic residues in OPN peptide and HA mineral surfaces. These bonds restrict the movement of OPN peptide, leading to a high energy dissipation under shear loading.
Resumo:
Efforts to reduce carbon emissions in the buildings sector have been focused on encouraging green design, construction and building operation; however, the business case is not very compelling if considering the energy cost savings alone. In recent years green building has been driven by a sense that it will improve the productivity of occupants,i something with much greater economic returns than energy savings. Reducing energy demand in green commercial buildings in a way that encourages greater productivity is not yet well understood as it involves a set of complex and interdependent factors. This paper outlines an investigation into these factors and focuses on better understanding the performance of and interaction between: design elements, internal environmental quality, occupant experience, tenant/leasing agreements, and building regulation and management. In doing so the paper presents a framework for improving energy efficiency in existing commercial buildings by considering a range of interconnected and synergistic elements.
Resumo:
A Software-as-a-Service or SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. Components in a composite SaaS may need to be scaled – replicated or deleted, to accommodate the user’s load. It may not be necessary to replicate all components of the SaaS, as some components can be shared by other instances. On the other hand, when the load is low, some of the instances may need to be deleted to avoid resource underutilisation. Thus, it is important to determine which components are to be scaled such that the performance of the SaaS is still maintained. Extensive research on the SaaS resource management in Cloud has not yet addressed the challenges of scaling process for composite SaaS. Therefore, a hybrid genetic algorithm is proposed in which it utilises the problem’s knowledge and explores the best combination of scaling plan for the components. Experimental results demonstrate that the proposed algorithm outperforms existing heuristic-based solutions.
Resumo:
Synthesis of various functional nanoassemblies, by using a combination of low-pressure reactive plasma-enhanced chemical deposition and plasma-assisted rf magnetron sputtering deposition is reported. This paper details how selective generation and manipulation of the required building blocks and management of unwanted nanoparticle contaminants, can be used for plasma-aided nanofabrication of carbon nanotip microemitter structures, ultra-high aspect ratio semiconductor nanowires, ordered quantum dot arrays, and microporous hydroxyapatite bioceramics. Emerging challenges of the plasma-aided synthesis of functional nanofilms and nanoassemblies are also discussed.
Resumo:
The results of two-dimensional fluid simulation of number densities and fluxes of the main building blocks and surface preparation species involved in nanoassembly of carbon-based nanopatterns in Ar+H2+C2H2 reactive plasmas are reported. It is shown that the process parameters and non-uniformity of surface fluxes of each particular species may affect the targeted nanopattern quality. The results can be used to improve predictability of plasma-aided nanofabrication processes and optimize the parameters of plasma nanotools.KGaA, Weinheim.
Optimum position of steel outrigger system for high rise composite buildings subjected to wind loads
Resumo:
The responses of composite buildings under wind loads clearly become more critical as the building becomes taller, less stiff and more lightweight. When the composite building increases in height, the stiffness of the structure becomes more important factor and introduction to belt truss and outrigger system is often used to provide sufficient lateral stiffness to the structure. Most of the research works to date is limited to reinforced concrete building with outrigger system of concrete structure, simple building plan layout, single height of a building, one direction wind and single level of outrigger arrangement. There is a scarcity in research works about the effective position of outrigger level on composite buildings under lateral wind loadings when the building plan layout, height and outrigger arrangement are varied. The aim of this paper is to determine the optimum location of steel belt and outrigger systems by using different arrangement of single and double level outrigger for different size, shape and height of composite building. In this study a comprehensive finite element modelling of composite building prototypes is carried out, with three different layouts (Rectangular, Octagonal and L shaped) and for three different storey (28, 42 and 57-storey). Models are analysed for dynamic cyclonic wind loads with various combination of steel belt and outrigger bracings. It is concluded that the effectiveness of the single and double level steel belt and outrigger bracing are varied based on their positions for different size, shape and height of composite building.
Resumo:
How can obstacles to innovation be overcome in road construction? Using a focus group methodology, and based on two prior rounds of empirical work, the analysis in this chapter generates a set of four key solutions to two main construction innovation obstacles: (1) restrictive tender assessment and (2) disagreement over who carries the risk of new product failure. The four key solutions uncovered were: 1) pre-project product certification; 2) past innovation performance assessment; 3) earlier involvement of product suppliers and road asset operators; and 4) performance-based specifications. Additional research is suggested in order to illicit deeper insights into possible solutions to construction innovation obstacles, and should emphasise furthering the theoretical interpretation of empirical phenomena.
Resumo:
In-plane shear capacity formulation of reinforced masonry is commonly conceived as the sum of the capacities of three parameters, viz, the masonry, the reinforcement, and the precompression. The term “masonry” incorporates the aspect ratio of the wall without any regard to the aspect ratio of the panels inscribed (and hence confined) by the vertical and the horizontal reinforced grout cores. This paper proposes design expressions in which the aspect ratio of such panels is explicitly included. For this purpose, the grouted confining cores are regarded as a grid of confining elements within which the panels are positioned. These confined masonry panels are then considered as building blocks for multi-bay, multi-storied confined masonry shear walls and analyzed using an experimentally validated macroscopic finite-element model. Results of the analyzes of 161 confined masonry walls containing panels of height to length ratio less than 1.0 have been regressed to formulate design expressions. These expressions have been first validated using independent test data sets and then compared with the existing equations in some selected international design standards. The concept of including the unreinforced masonry panel aspect ratio as an additional term in the design expression for partially grouted/confined masonry shear walls is recommended based on the conclusions from this paper.
Resumo:
Recently, halogen···halogen interactions have been demonstrated to stabilize two-dimensional supramolecular assemblies at the liquid–solid interface. Here we study the effect of changing the halogen, and report on the 2D supramolecular structures obtained by the adsorption of 2,4,6-tris(4-bromophenyl)-1,3,5-triazine (TBPT) and 2,4,6-tris(4-iodophenyl)-1,3,5-triazine (TIPT) on both highly oriented pyrolytic graphite and the (111) facet of a gold single crystal. These molecular systems were investigated by combining room-temperature scanning tunneling microscopy in ambient conditions with density functional theory, and are compared to results reported in the literature for the similar molecules 1,3,5-tri(4-bromophenyl)benzene (TBPB) and 1,3,5-tri(4-iodophenyl)benzene (TIPB). We find that the substrate exerts a much stronger effect than the nature of the halogen atoms in the molecular building blocks. Our results indicate that the triazine core, which renders TBPT and TIPT stiff and planar, leads to stronger adsorption energies and hence structures that are different from those found for TBPB and TIPB. On the reconstructed Au(111) surface we find that the TBPT network is sensitive to the fcc- and hcp-stacked regions, indicating a significant substrate effect. This makes TBPT the first molecule reported to form a continuous monolayer at room temperature in which molecular packing is altered on the differently reconstructed regions of the Au(111) surface. Solvent-dependent polymorphs with solvent coadsorption were observed for TBPT on HOPG. This is the first example of a multicomponent self-assembled molecular networks involving the rare cyclic, hydrogen-bonded hexamer of carboxylic groups, R66(24) synthon.
Resumo:
Three-dimensional (3D) hierarchical nanoscale architectures comprised of building blocks, with specifically engineered morphologies, are expected to play important roles in the fabrication of 'next generation' microelectronic and optoelectronic devices due to their high surface-to-volume ratio as well as opto-electronic properties. Herein, a series of well-defined 3D hierarchical rutile TiO2 architectures (HRT) were successfully prepared using a facile hydrothermal method without any surfactant or template, simply by changing the concentration of hydrochloric acid used in the synthesis. The production of these materials provides, to the best of our knowledge, the first identified example of a ledgewise growth mechanism in a rutile TiO2 structure. Also for the first time, a Dye-sensitized Solar Cell (DSC) combining a HRT is reported in conjunction with a high-extinction-coefficient metal-free organic sensitizer (D149), achieving a conversion efficiency of 5.5%, which is superior to ones employing P25 (4.5%), comparable to state-of-the-art commercial transparent titania anatase paste (5.8%). Further to this, an overall conversion efficiency 8.6% was achieved when HRT was used as the light scattering layer, a considerable improvement over the commercial transparent/reflector titania anatase paste (7.6%), a significantly smaller gap in performance than has been seen previously.
Resumo:
Following market reforms in 1986 Vietnam has transformed from a poor closed economy to a low middle income economy. Like other developing countries, economic growth has placed significant pressure on both infrastructure and environment, particularly the pressure of increasing housing demand, energy consumption, and waste and pollution management. In response to the development challenges and the green movement globally, the government has initiated actions to promote green building to promote more sustainable development. However, green building adoption in Vietnam is still criticised as being slow and lacking governmental support. This paper proposes that promoting green building could solve three inter-connected challenges hindering sustainable development, and provides a comparative review of progress.
Resumo:
The construction industry should be a priority to all governments because it impacts economically and socially on all citizens. Sector turnover in industrialised economies typically averages 8-12% of GDP. Further, construction is critical to economic growth. Recent Australian studies estimate that a 10% gain in efficiency in construction translates to a 2.5% increase in GDP Inefficiencies in the Australian construction industry have been identified by a number of recent studies modelling the building process. They have identified potential savings in time of between 25% and 40% by reducing non-value added steps in the process. A culture of reform is now emerging in the industry – one in which alternate forms of project delivery are being trialed. Government and industry have identified Alliance Contracting as a means to increase efficiency in the construction industry as part of a new innovative procurement environment. Alliance contracting requires parties to form relationships and work cooperatively to provide a more complete service. This is a significant cultural change for the construction industry, with its well-known adversarial record in traditional contracting. Alliance contracts offer enormous potential benefits, but the Australian construction industry needs to develop new skills to effectively participate in the new relationship environment. This paper describes a collaborative project identifying skill needs for clients and construction professionals to more effectively participate in an increasingly sophisticated international procurement environment. The aim of identifying these skill needs is to assist industry, government, and skill developers to prepare the Australian construction workforce for the future. The collaborating Australian team has been fortunate to secure the Australian National Museum in Canberra as its live case study. The Acton Peninsula Development is the first major building development in the world awarded on the basis of a joint alliance contract.