293 resultados para Breast expander implants
Resumo:
Background In Australia, breast cancer is the most common cancer affecting Australian women. Inequalities in clinical and psychosocial outcomes have existed for some time, affecting particularly women from rural areas and from areas of disadvantage. We have a limited understanding of how individual and area-level factors are related to each other, and their associations with survival and other clinical and psychosocial outcomes. Methods/Design This study will examine associations between breast cancer recurrence, survival and psychosocial outcomes (e.g. distress, unmet supportive care needs, quality of life). The study will use an innovative multilevel approach using area-level factors simultaneously with detailed individual-level factors to assess the relative importance of remoteness, socioeconomic and demographic factors, diagnostic and treatment pathways and processes, and supportive care utilization to clinical and psychosocial outcomes. The study will use telephone and self-administered questionnaires to collect individual-level data from approximately 3, 300 women ascertained from the Queensland Cancer Registry diagnosed with invasive breast cancer residing in 478 Statistical Local Areas Queensland in 2011 and 2012. Area-level data will be sourced from the Australian Bureau of Statistics census data. Geo-coding and spatial technology will be used to calculate road travel distances from patients' residence to diagnostic and treatment centres. Data analysis will include a combination of standard empirical procedures and multilevel modelling. Discussion The study will address the critical question of: what are the individual- or area-level factors associated with inequalities in outcomes from breast cancer? The findings will provide health care providers and policy makers with targeted information to improve the management of women with breast cancer, and inform the development of strategies to improve psychosocial care for women with breast cancer.
Resumo:
Background The adverse consequences of lymphedema following breast cancer in relation to physical function and quality of life are clear; however, its potential relationship with survival has not been investigated. Our purpose was to determine the prevalence of lymphedema and associated upper-body symptoms at 6 years following breast cancer and to examine the prognostic significance of lymphedema with respect to overall 6-year survival (OS). Methods and Results A population-based sample of Australian women (n=287) diagnosed with invasive, unilateral breast cancer was followed for a median of 6.6 years and prospectively assessed for lymphedema (using bioimpedance spectroscopy [BIS], sum of arm circumferences [SOAC], and self-reported arm swelling), a range of upper-body symptoms, and vital status. OS was measured from date of diagnosis to date of death or last follow-up. Kaplan-Meier methods were used to calculate OS and Cox proportional hazards models quantified the risk associated with lymphedema. Approximately 45% of women had reported at least one moderate to extreme symptom at 6.6 years postdiagnosis, while 34% had shown clinical evidence of lymphedema, and 48% reported arm swelling at least once since baseline assessment. A total of 27 (9.4%) women died during the follow-up period, and lymphedema, diagnosed by BIS or SOAC between 6–18 months postdiagnosis, predicted mortality (BIS: HR=2.5; 95% CI: 0.9, 6.8, p=0.08; SOAC: 3.0; 95% CI: 1.1, 8.7, p=0.04). There was no association (HR=1.2; 95% CI: 0.5, 2.6, p=0.68) between self-reported arm swelling and OS. Conclusions These findings suggest that lymphedema may influence survival following breast cancer treatment and warrant further investigation in other cancer cohorts and explication of a potential underlying biology.
Resumo:
The lymphedema diagnostic method used in descriptive or intervention studies may influence results found. The purposes of this work were to compare baseline lymphedema prevalence in the physical activity and lymphedema (PAL) trial cohort and to subsequently compare the effect of the weight-lifting intervention on lymphedema, according to four standard diagnostic methods. The PAL trial was a randomized controlled intervention study, involving 295 women who had previously been treated for breast cancer, and evaluated the effect of 12 months of weight lifting on lymphedema status. Four diagnostic methods were used to evaluate lymphedema outcomes: (i) interlimb volume difference through water displacement, (ii) interlimb size difference through sum of arm circumferences, (iii) interlimb impedance ratio using bioimpedance spectroscopy, and (iv) a validated self-report survey. Of the 295 women who participated in the PAL trial, between 22 and 52% were considered to have lymphedema at baseline according to the four diagnostic criteria used. No between-group differences were noted in the proportion of women who had a change in interlimb volume, interlimb size, interlimb ratio, or survey score of ≥5, ≥5, ≥10%, and 1 unit, respectively (cumulative incidence ratio at study end for each measure ranged between 0.6 and 0.8, with confidence intervals spanning 1.0). The variation in proportions of women within the PAL trial considered to have lymphoedema at baseline highlights the potential impact of the diagnostic criteria on population surveillance regarding prevalence of this common morbidity of treatment. Importantly though, progressive weight lifting was shown to be safe for women following breast cancer, even for those at risk or with lymphedema, irrespective of the diagnostic criteria used.
Resumo:
Breast cancer in its advanced stage has a high predilection to the skeleton. Currently, treatment options of breast cancer-related bone metastasis are restricted to only palliative therapeutic modalities. This is due to the fact that mechanisms regarding the breast cancer celI-bone colonisation as well as the interactions of breast cancer cells with the bone microenvironment are not fully understood, yet. This might be explained through a lack of appropriate in vitro and in vivo models that are currently addressing the above mentioned issue. Hence the hypothesis that the translation of a bone tissue engineering platform could lead to improved and more physiological in vitro and in vivo model systems in order to investigate breast cancer related bone colonisation was embraced in this PhD thesis. Therefore the first objective was to develop an in vitro model system that mimics human mineralised bone matrix to the highest possible extent to examine the specific biological question, how the human bone matrix influences breast cancer cell behaviour. Thus, primary human osteoblasts were isolated from human bone and cultured under osteogenic conditions. Upon ammonium hydroxide treatment, a cell-free intact mineralised human bone matrix was left behind. Analyses revealed a similar protein and mineral composition of the decellularised osteoblast matrix to human bone. Seeding of a panel of breast cancer cells onto the bone mimicking matrix as well as reference substrates like standard tissue culture plastic and collagen coated tissue culture plastic revealed substrate specific differences of cellular behaviour. Analyses of attachment, alignment, migration, proliferation, invasion, as well as downstream signalling pathways showed that these cellular properties were influenced through the osteoblast matrix. The second objective of this PhD project was the development of a human ectopic bone model in NOD/SCID mice using medical grade polycaprolactone tricalcium phosphate (mPCL-TCP) scaffold. Human osteoblasts and mesenchymal stem cells were seeded onto an mPCL-TCP scaffold, fabricated using a fused deposition modelling technique. After subcutaneous implantation in conjunction with the bone morphogenetic protein 7, limited bone formation was observed due to the mechanical properties of the applied scaffold and restricted integration into the soft tissue of flank of NOD/SCID mice. Thus, a different scaffold fabrication technique was chosen using the same polymer. Electrospun tubular scaffolds were seeded with human osteoblasts, as they showed previously the highest amount of bone formation and implanted into the flanks of NOD/SCID mice. Ectopic bone formation with sufficient vascularisation could be observed. After implantation of breast cancer cells using a polyethylene glycol hydrogel in close proximity to the newly formed bone, macroscopic communication between the newly formed bone and the tumour could be observed. Taken together, this PhD project showed that bone tissue engineering platforms could be used to develop an in vitro and in vivo model system to study cancer cell colonisation in the bone microenvironment.
Resumo:
This study examines the influence of cancer stage, distance to treatment facilities and area disadvantage on breast and colorectal cancer spatial survival inequalities. We also estimate the number of premature deaths after adjusting for cancer stage to quantify the impact of spatial survival inequalities. Population-based descriptive study of residents aged <90 years in Queensland, Australia diagnosed with primary invasive breast (25,202 females) or colorectal (14,690 males, 11,700 females) cancers during 1996-2007. Bayesian hierarchical models explored relative survival inequalities across 478 regions. Cancer stage and disadvantage explained the spatial inequalities in breast cancer survival, however spatial inequalities in colorectal cancer survival persisted after adjustment. Of the 6,019 colorectal cancer deaths within 5 years of diagnosis, 470 (8%) were associated with spatial inequalities in non-diagnostic factors, i.e. factors beyond cancer stage at diagnosis. For breast cancers, of 2,412 deaths, 170 (7%) were related to spatial inequalities in non-diagnostic factors. Quantifying premature deaths can increase incentive for action to reduce these spatial inequalities.
Resumo:
Background: There is a need to better describe and understand the prevalence of breast cancer treatment-related adverse effects amenable to physical therapy and rehabilitative exercise. Prior studies have been limited to single issues and lacked long term follow-up. The Pulling Through Study provides data on prevalence of adverse effects in breast cancer survivors followed over six years. Methods: A population-based sample of Australian women (n=287) diagnosed with invasive, unilateral breast cancer was followed for a median of 6.6 years and prospectively assessed for treatment-related complications at 6, 12, 18 months, and 6 years post-diagnosis. Assessments included post-surgical complications, skin or tissue reaction to radiation therapy, upper-body symptoms, lymphedema, 10% weight gain, fatigue, and upper-quadrant function. The proportion of women with positive indication for each complication and one or more complication was estimated using all available data at each time point. Women were only considered to have a specific complication if they reported the highest two levels of the Likert scale for self-reported issues. Results: At six years post-diagnosis over 60% of women experienced one or more side effects amenable to rehabilitative intervention. The proportion of women experiencing 3 or more side effects decreased throughout follow-up, while the proportion experiencing no side effects remained stable around 40% from 12 months to six years. Weight gain was the only complication to increase in prevalence over time. Conclusion: These data support the development of a multi-disciplinary prospective surveillance approach for the purposes of managing and treating adverse effects in breast cancer survivors.
Resumo:
Breast cancer is a leading contributor to the burden of disease in Australia. Fortunately, the recent introduction of diverse therapeutic strategies have improved the survival outcome for many women. Despite this, the clinical management of breast cancer remains problematic as not all approaches are sufficiently sophisticated to take into account the heterogeneity of this disease and are unable to predict disease progression, in particular, metastasis. As such, women with good prognostic outcomes are exposed to the side effects of therapies without added benefit. Furthermore, women with aggressive disease for whom these advanced treatments would deliver benefit cannot be distinguished and opportunities for more intensive or novel treatment are lost. This study is designed to identify novel factors associated with disease progression, and the potential to inform disease prognosis. Frequently overlooked, yet common mediators of disease are the interactions that take place between the insulin-like growth factor (IGF) system and the extracellular matrix (ECM). Our laboratory has previously demonstrated that multiprotein insulin-like growth factor-I (IGF-I): insulin-like growth factor binding protein (IGFBP): vitronectin (VN) complexes stimulate migration of breast cancer cells in vitro, via the cooperative involvement of the insulin-like growth factor type I receptor (IGF-IR) and VN-binding integrins. However, the effects of IGF and ECM protein interactions on the dissemination and progression of breast cancer in vivo are unknown. It was hypothesised that interactions between proteins required for IGF induced signalling events and those within the ECM contribute to breast cancer metastasis and are prognostic and predictive indicators of patient outcome. To address this hypothesis, semiquantitative immunohistochemistry (IHC) analyses were performed to compare the extracellular and subcellular distribution of IGF and ECM induced signalling proteins between matched normal, primary cancer, and metastatic cancer among archival formalin-fixed paraffin-embedded (FFPE) breast tissue samples collected from women attending the Princess Alexandra Hospital, Brisbane. Multivariate Cox proportional hazards (PH) regression survival models in conjunction with a modified „purposeful selection of covariates. method were applied to determine the prognostic potential of these proteins. This study provides the first in-depth, compartmentalised analysis of the distribution of IGF and ECM induced signalling proteins. As protein function and protein localisation are closely correlated, these findings provide novel insights into IGF signalling and ECM protein function during breast cancer development and progression. Distinct IGF signalling and ECM protein immunoreactivity was observed in the stroma and/or in subcellular locations in normal breast, primary cancer and metastatic cancer tissues. Analysis of the presence and location of stratifin (SFN) suggested a causal relationship in ECM remodelling events during breast cancer development and progression. The results of this study have also suggested that fibronectin (FN) and ¥â1 integrin are important for the formation of invadopodia and epithelial-to-mesenchymal transition (EMT) events. Our data also highlighted the importance of the temporal and spatial distribution of IGF induced signalling proteins in breast cancer metastasis; in particular, SFN, enhancer-of-split and hairy-related protein 2 (SHARP-2), total-akt/protein kinase B 1 (Total-AKT1), phosphorylated-akt/protein kinase B (P-AKT), extracellular signal-related kinase-1 and extracellular signal-related kinase-2 (ERK1/2) and phosphorylated-extracellular signal-related kinase-1 and extracellular signal-related kinase-2 (P-ERK1/2). Multivariate survival models were created from the immunohistochemical data. These models were found to fit well with these data with very high statistical confidence. Numerous prognostic confounding effects and effect modifications were identified among elements of the ECM and IGF signalling cascade and corroborate the survival models. This finding provides further evidence for the prognostic potential of IGF and ECM induced signalling proteins. In addition, the adjusted measures of associations obtained in this study have strengthened the validity and utility of the resulting models. The findings from this study provide insights into the biological interactions that occur during the development of breast tissue and contribute to disease progression. Importantly, these multivariate survival models could provide important prognostic and predictive indicators that assist the clinical management of breast disease, namely in the early identification of cancers with a propensity to metastasise, and/or recur following adjuvant therapy. The outcomes of this study further inform the development of new therapeutics to aid patient recovery. The findings from this study have widespread clinical application in the diagnosis of disease and prognosis of disease progression, and inform the most appropriate clinical management of individuals with breast cancer.
Resumo:
Purpose Exercise for Health was a randomized, controlled trial designed to evaluate two modes of delivering (face-to-face [FtF] and over-the-telephone [Tel]) an 8-month translational exercise intervention, commencing 6-weeks post-breast cancer surgery (PS). Methods Outcomes included quality of life (QoL), function (fitness and upper-body) and treatment-related side effects (fatigue, lymphoedema, body mass index, menopausal symptoms, anxiety, depression and pain). Generalised estimating equation modelling determined time (baseline [5-weeks PS], mid-intervention [6-months PS], post-intervention [12-months PS]), group (FtF, Tel, Usual Care [UC]) and time-by-group effects. 194 women representative of the breast cancer population were randomised to the FtF (n=67), Tel (n=67) and UC (n=60) groups. Results: There were significant (p<0.05) interaction effects on QoL, fitness and fatigue, with differences being observed between the treatment groups and the UC group. Trends observed for the treatment groups were similar. The treatment groups reported improved QoL, fitness and fatigue over time and changes observed between baseline and post-intervention were clinically relevant. In contrast, the UC group experienced no change, or worsening QoL, fitness and fatigue, mid-intervention. Although improvements in the UC group occurred by 12-months post-surgery, the change did not meet the clinically relevant threshold. There were no differences in other treatment-related side-effects between groups. Conclusion This translational intervention trial, delivered either face-to-face or over-the-telephone, supports exercise as a form of adjuvant breast cancer therapy that can prevent declines in fitness and function during treatment and optimise recovery post-treatment.
Resumo:
Owing to the successful use of non-invasive vibration analysis to monitor the progression of dental implant healing and stabilization, it is now being considered as a method to monitor femoral implants in transfemoral amputees. This study uses composite femur-implant physical models to investigate the ability of modal analysis to detect changes at the interface between the implant and bone simulating those that occur during osseointegration. Using electromagnetic shaker excitation, differences were detected in the resonant frequencies and mode shapes of the model when the implant fit in the bone was altered to simulate the two interface cases considered: firm and loose fixation. The study showed that it is beneficial to examine higher resonant frequencies and their mode shapes (rather than the fundamental frequency only) when assessing fixation. The influence of the model boundary conditions on the modal parameters was also demonstrated. Further work is required to more accurately model the mechanical changes occurring at the bone-implant interface in vivo, as well as further refinement of the model boundary conditions to appropriately represent the in vivo conditions. Nevertheless, the ability to detect changes in the model dynamic properties demonstrates the potential of modal analysis in this application and warrants further investigation.