171 resultados para Benbow Mine
Resumo:
Verification testing of two model technologies in pilot scale to remove arsenic and antimony based on reverse osmosis and chemical coagulation/filtration systems was conducted in Spiro Tunnel Water Filtration Plant located in Park City, Utah, US. The source water was groundwater in abandoned silver mine, naturally contaminated by 60-80 ppb of arsenic and antimony below 10 ppb. This water represents one of the sources of drinking water for Park City and constitutes about 44% of the water supply. The failure to remove antimony efficiently by coagulation/filtration (only 4.4% removal rate) under design conditions is discussed in terms of the chemistry differences between Sb (III, V) and As (III, V). Removal of Sb(V) at pH > 7, using coagulation/filtration technology, requires much higher (50 to 80 times) concentration of iron (III) than As. The stronger adsorption of arsenate over a wider pH range can be explained by the fact that arsenic acid is tri-protic, whereas antimonic acid is monoprotic. This difference in properties of As(V) and Sb(V) makes antimony (V) more difficult to be efficiently removed in low concentrations of iron hydroxide and alkaline pH waters, especially in concentration of Sb < 10 ppb.
Resumo:
The objective of this research is to determine the molecular structure of the mineral leogangite. The formation of the types of arsenosulphate minerals offers a mechanism for arsenate removal from soils and mine dumps. Raman and infrared spectroscopy have been used to characterise the mineral. Observed bands are assigned to the stretching and bending vibrations of (SO4)2- and (AsO4)3- units, stretching and bending vibrations of hydrogen bonded (OH)- ions and Cu2+-(O,OH) units. The approximate range of O-H...O hydrogen bond lengths is inferred from the Raman spectra. Raman spectra of leogangite from different origins differ in that some spectra are more complex, where bands are sharp and the degenerate bands of (SO4)2- and (AsO4)3- are split and more intense. Lower wavenumbers of H2O bending vibration in the spectrum may indicate the presence of weaker hydrogen bonds compared with those in a different leogangite samples. The formation of leogangite offers a mechanism for the removal of arsenic from the environment.
Resumo:
The mixed anion mineral parnauite Cu9[(OH)10|SO4|(AsO4)2].7H2O from two localities namely Cap Garonne Mine, Le Pradet, France and Majuba Hill mine, Pershing County, Nevada, USA has been studied by Raman spectroscopy. The Raman spectrum of the French sample is dominated by an intense band at 975 cm-1 assigned to the ν1 (SO4)2- symmetric stretching mode and Raman bands at 1077 and 1097 cm-1 may be attributed to the ν3 (SO4)2- antisymmetric stretching mode. Two Raman bands 1107 and 1126 cm-1 are assigned to carbonate CO32- symmetric stretching bands and confirms the presence of carbonate in the structure of parnauite. The comparatively sharp band for the Pershing County mineral at 976 cm-1 is assigned to the ν1 (SO4)2- symmetric stretching mode and a broad spectral profile centered upon 1097 cm-1 is attributed to the ν3 (SO4)2- antisymmetric stretching mode. Two intense bands for the Pershing County mineral at 851 and 810 cm-1 are assigned to the ν1 (AsO4)3- symmetric stretching and ν3 (AsO4)3- antisymmetric stretching modes. Two Raman bands for the French mineral observed at 725 and 777 cm-1 are attributed to the ν3 (AsO4)3- antisymmetric stretching mode. For the French mineral, a low intensity Raman band is observed at 869 cm-1 and is assigned to the ν1 (AsO4)3- symmetric stretching vibration. Chemical composition of parnauite remains open and the question may be raised is parnauite a solid solution of two or more minerals such as a copper hydroxy-arsenate and a copper hydroxy sulphate.
Resumo:
The objective of this research is to determine the molecular structure of the mineral hidalgoite PbAl3(AsO4)(SO4)(OH)6 using vibrational spectroscopy. The mineral is found in old mine sites. Observed bands are assigned to the stretching and bending vibrations of (SO4)2- and (AsO4)3- units, stretching and bending vibrations of hydrogen bonded (OH)- ions and Al3+-(O,OH) units. The approximate range of O-H...O hydrogen bond lengths is inferred from the Raman and infrared spectra. Values of 2.6989 Å, 2.7682 Å, 2.8659 Å were obtained. The formation of hidalgoite may offer a mechanism for the removal of arsenic from the environment.
Resumo:
Search log data is multi dimensional data consisting of number of searches of multiple users with many searched parameters. This data can be used to identify a user’s interest in an item or object being searched. Identifying highest interests of a Web user from his search log data is a complex process. Based on a user’s previous searches, most recommendation methods employ two-dimensional models to find relevant items. Such items are then recommended to a user. Two-dimensional data models, when used to mine knowledge from such multi dimensional data may not be able to give good mappings of user and his searches. The major problem with such models is that they are unable to find the latent relationships that exist between different searched dimensions. In this research work, we utilize tensors to model the various searches made by a user. Such high dimensional data model is then used to extract the relationship between various dimensions, and find the prominent searched components. To achieve this, we have used popular tensor decomposition methods like PARAFAC, Tucker and HOSVD. All experiments and evaluation is done on real datasets, which clearly show the effectiveness of tensor models in finding prominent searched components in comparison to other widely used two-dimensional data models. Such top rated searched components are then given as recommendation to users.
Resumo:
In the long term, with development of skill, knowledge, exposure and confidence within the engineering profession, rigorous analysis techniques have the potential to become a reliable and far more comprehensive method for design and verification of the structural adequacy of OPS, write Nimal J Perera, David P Thambiratnam and Brian Clark. This paper explores the potential to enhance operator safety of self-propelled mechanical plant subjected to roll over and impact of falling objects using the non-linear and dynamic response simulation capabilities of analytical processes to supplement quasi-static testing methods prescribed in International and Australian Codes of Practice for bolt on Operator Protection Systems (OPS) that are post fitted. The paper is based on research work carried out by the authors at the Queensland University of Technology (QUT) over a period of three years by instrumentation of prototype tests, scale model tests in the laboratory and rigorous analysis using validated Finite Element (FE) Models. The FE codes used were ABAQUS for implicit analysis and LSDYNA for explicit analysis. The rigorous analysis and dynamic simulation technique described in the paper can be used to investigate the structural response due to accident scenarios such as multiple roll over, impact of multiple objects and combinations of such events and thereby enhance the safety and performance of Roll Over and Falling Object Protection Systems (ROPS and FOPS). The analytical techniques are based on sound engineering principles and well established practice for investigation of dynamic impact on all self propelled vehicles. They are used for many other similar applications where experimental techniques are not feasible.
Resumo:
Pedestrians’ use of mp3 players or mobile phones can pose the risk of being hit by motor vehicles. We present an approach for detecting a crash risk level using the computing power and the microphone of mobile devices that can be used to alert the user in advance of an approaching vehicle so as to avoid a crash. A single feature extractor classifier is not usually able to deal with the diversity of risky acoustic scenarios. In this paper, we address the problem of detection of vehicles approaching a pedestrian by a novel, simple, non resource intensive acoustic method. The method uses a set of existing statistical tools to mine signal features. Audio features are adaptively thresholded for relevance and classified with a three component heuristic. The resulting Acoustic Hazard Detection (AHD) system has a very low false positive detection rate. The results of this study could help mobile device manufacturers to embed the presented features into future potable devices and contribute to road safety.
Resumo:
Open pit mine operations are complex businesses that demand a constant assessment of risk. This is because the value of a mine project is typically influenced by many underlying economic and physical uncertainties, such as metal prices, metal grades, costs, schedules, quantities, and environmental issues, among others, which are not known with much certainty at the beginning of the project. Hence, mining projects present a considerable challenge to those involved in associated investment decisions, such as the owners of the mine and other stakeholders. In general terms, when an option exists to acquire a new or operating mining project, , the owners and stock holders of the mine project need to know the value of the mining project, which is the fundamental criterion for making final decisions about going ahead with the venture capital. However, obtaining the mine project’s value is not an easy task. The reason for this is that sophisticated valuation and mine optimisation techniques, which combine advanced theories in geostatistics, statistics, engineering, economics and finance, among others, need to be used by the mine analyst or mine planner in order to assess and quantify the existing uncertainty and, consequently, the risk involved in the project investment. Furthermore, current valuation and mine optimisation techniques do not complement each other. That is valuation techniques based on real options (RO) analysis assume an expected (constant) metal grade and ore tonnage during a specified period, while mine optimisation (MO) techniques assume expected (constant) metal prices and mining costs. These assumptions are not totally correct since both sources of uncertainty—that of the orebody (metal grade and reserves of mineral), and that about the future behaviour of metal prices and mining costs—are the ones that have great impact on the value of any mining project. Consequently, the key objective of this thesis is twofold. The first objective consists of analysing and understanding the main sources of uncertainty in an open pit mining project, such as the orebody (in situ metal grade), mining costs and metal price uncertainties, and their effect on the final project value. The second objective consists of breaking down the wall of isolation between economic valuation and mine optimisation techniques in order to generate a novel open pit mine evaluation framework called the ―Integrated Valuation / Optimisation Framework (IVOF)‖. One important characteristic of this new framework is that it incorporates the RO and MO valuation techniques into a single integrated process that quantifies and describes uncertainty and risk in a mine project evaluation process, giving a more realistic estimate of the project’s value. To achieve this, novel and advanced engineering and econometric methods are used to integrate financial and geological uncertainty into dynamic risk forecasting measures. The proposed mine valuation/optimisation technique is then applied to a real gold disseminated open pit mine deposit to estimate its value in the face of orebody, mining costs and metal price uncertainties.
Resumo:
In this paper, a generic and flexible optimisation methodology is developed to represent, model, solve and analyse the iron ore supply chain system by integrating of iron ore shipment, stockpiles and railing within a whole system. As a result, an integrated train-stockpile-ship timetable is created and optimised for improving efficiency of overall supply chain system. The proposed methodology provides better decision making on how to significantly improve rolling stock utilisation with the best cost-effectiveness ratio. Based on extensive computational experiments and analysis, insightful and quantitative advices are suggested for iron ore mine industry practitioners. The proposed methodology contributes to the sustainability of the environment by reducing pollution due to better utilisation of transportation resources and fuel.
Resumo:
In this paper, we describe the main processes and operations in mining industries and present a comprehensive survey of operations research methodologies that have been applied over the last several decades. The literature review is classified into four main categories: mine design; mine production; mine transportation; and mine evaluation. Mining design models are further separated according to two main mining methods: open-pit and underground. Moreover, mine production models are subcategorised into two groups: ore mining and coal mining. Mine transportation models are further partitioned in accordance with fleet management, truck haulage and train scheduling. Mine evaluation models are further subdivided into four clusters in terms of mining method selection, quality control, financial risks and environmental protection. The main characteristics of four Australian commercial mining software are addressed and compared. This paper bridges the gaps in the literature and motivates researchers to develop more applicable, realistic and comprehensive operations research models and solution techniques that are directly linked with mining industries.
Resumo:
The changing demographics of the mining workforce and the increasing demand for skilled workers increases the importance of sustaining a healthy workforce now and for the future. Although health is strongly related to safety, the two areas are not well integrated and the relationship is poorly understood. As such there is an important need to raise the profile of health within the Occupational Health and Safety (OH&S) domain. The mining industry carries health and safety risks, often greater than other occupations. Whilst the mining industry is regulated by stringent OH&S controls, the very nature of the work and environmental influences expose employees to a greater number of injury risk factors than many other industries. In contrast to its excellent safety record, compared to most other industries, the mining workforce has a high proportion of chronic health problems. These problems can be exacerbated by the ageing of the workforce, regional location of sites and organisational issues influencing work demands. A major focus has been on the treatment of these conditions with relatively limited attention to prevention strategies. An important prevention strategy is the raising of awareness among the workforce of health issues and the significant increase in the volume of health related information has provided an excellent opportunity to access relevant information. Unfortunately, this information is of varying quality, may not be evidence based, and may provide the wrong guidance to the development of interventions designed to improve health. Limited time of most employees and potential lack of knowledge of ability to differentiate quality information presents additional problems or barriers to increasing awareness of health issues...
Resumo:
It was rugby league State of Origin night 2008 and a group of adults had descended upon a house in Eagleby, Brisbane to have some drinks and to celebrate the game. At 11pm that evening, Shane Thomas Davidson entered the bedroom of the homeowner’s 10-year-old son, TC. Davidson approached the bed and began to massage the boy’s penis under his clothing, which caused TC to wake. Davidson stated, ‘Show me how big your willy is and I’ll show you how big mine is’. TC refused the request and after a small period of time, left the bedroom and told his father what had happened...
Resumo:
This article presents a case study of corporate dialogue with vulnerable others. Dialogue with marginalized external groups is increasingly presented in the business literature as the key to making corporate social responsibility possible in particular through corporate learning. Corporate public communications at the same time promote community engagement as a core aspect of corporate social responsibility. This article examines the possibilities for and conditions underpinning corporate dialogue with marginalized stakeholders as occurred around the unexpected and sudden closure in January 2009 of the AU$2.2 billion BHP Billiton Ravensthorpe Nickel mine in rural Western Australia. In doing so we draw on John Roberts’ notion of dialogue with vulnerable others, and apply a discourse analysis approach to data spanning corporate public communications and interviews with residents affected by the decision to close the mine. In presenting this case study we contribute to the as yet limited organizational research concerned directly with marginalized stakeholders and argue that corporate social responsibility discourse and vulnerable other dialogue not only affirms the primacy of business interests but also co-opts vulnerable others in the pursuit of these interests. In conclusion we consider case study implications for critical understandings of corporate dialogue with vulnerable others.
Resumo:
Coal Seam Gas (CSG) is a form of natural gas (mainly methane) sorbed in underground coal beds. To mine this gas, wells are drilled directly into an underground coal seam and groundwater (CSG water) is pumped out to the surface. This lowers the downhole piezometric pressure and enables gas desporption from the coal matrix. In the United States, this gas has been extracted commercially since the 1980s. The economic success of US CSG projects has inspired exploration and development in Australia and New Zealand. In Australia, Queensland’s Bowen and Surat basins have been the subject of increased CSG development over the last decade. CSG growth in other Australian basins has not matured to the same level but exploration and development are taking place at an accelerated pace in the Sydney Basin (Illawarra and the Hunter Valley, NSW) and in the Gunnedah Basin. Similarly, CSG exploration in New Zealand has focused in the Waikato region (Maramarua and Huntly), in the West Coast region (Buller, Reefton, and Greymouth), and in Southland (Kaitangata, Mataura, and Ohai). Figure 1 shows a Shcoeller diagram with CSG samples from selected basins in Australia, New Zealand, and the USA. CSG water from all of these basins exhibit the same geochemical signature – low calcium, low magnesium, high bicarbonate, low sulphate and, sometimes, high chloride. This water quality is a direct result of specific biological and geological processes that have taken part in the formation of CSG. In general, these processes include the weathering of rocks (carbonates, dolomite, and halite), cation exchange with clays (responsible for enhanced sodium and depleted calcium and magnesium), and biogenic processes (accounting for the presence of high bicarbonate concentrations). The salinity of CSG waters tends to be brackish (TDS < 30000 mg/l) with a fairly neutral pH. These particular characteristics need to be taken into consideration when assessing water management and disposal alternatives. Environmental issues associated with CSG water disposal have been prominent in developed basins such as the Powder River Basin (PRB) in the United States. When disposed on the land or used for irrigation, water having a high dissolved salts content may reduce water availability to crops thus affecting crop yield. In addition, the high sodium, low calcium and low magnesium concentrations increase the potential to disperse soils and significantly reduce the water infiltration rate. Therefore, CSG waters need to be properly characterised, treated, and disposed to safeguard the environment without compromising other natural resources.
Resumo:
Global demand for minerals and energy products has fuelled Australia’s recent ‘resources boom’ and led to the rapid expansion of mining projects not solely in remote regions but increasingly in long-settled traditionally agriculture-dependent rural areas. Not only has this activity radically changed the economic geography of the nation but a fundamental shift has also occurred to accommodate the acceleration in industry labour demands. In particular, the rush to mine has seen the entrenchment of workforce arrangements largely dependent on fly-in, fly-out (FIFO) and drive–in, drive–out (DIDO) workers. This form of employment has been highly contentious in rural communities at the frontline of resource sector activities. In the context of structural sweeping changes, the selection of study locations informed by a range of indices of violence. Serendipitously we carried out fieldwork in communities undergoing rapid change as a result of expanding resource sector activities. The presence of large numbers of non-resident FIFO and DIDO workers was transforming these frontline communities. This chapter highlights some implications of these changes, drawing upon one particular location, which historically depended on agriculture but has undergone redefinition through mining.