113 resultados para Barba, Andrés
Resumo:
Priceite is a calcium borate mineral and occurs as white crystals in the monoclinic pyramidal crystal system. We have used a combination of Raman spectroscopy with complimentary infrared spectroscopy and scanning electron microscopy with Energy-dispersive X-ray Spectroscopy (EDS) to study the mineral priceite. Chemical analysis shows a pure phase consisting of B and Ca only. Raman bands at 956, 974, 991, and 1019 cm−1 are assigned to the BO stretching vibration of the B10O19 units. Raman bands at 1071, 1100, 1127, 1169, and 1211 cm−1 are attributed to the BOH in-plane bending modes. The intense infrared band at 805 cm−1 is assigned to the trigonal borate stretching modes. The Raman band at 674 cm−1 together with bands at 689, 697, 736, and 602 cm−1 are assigned to the trigonal and tetrahedral borate bending modes. Raman spectroscopy in the hydroxyl stretching region shows a series of bands with intense Raman band at 3555 cm−1 with a distinct shoulder at 3568 cm−1. Other bands in this spectral region are found at 3221, 3385, 3404, 3496, and 3510 cm−1. All of these bands are assigned to water stretching vibrations. The observation of multiple bands supports the concept of water being in different molecular environments in the structure of priceite. The molecular structure of a natural priceite has been assessed using vibrational spectroscopy.
Resumo:
The mineral meliphanite (Ca,Na)2Be[(Si,Al)2O6(F,OH)] is a crystalline sodium calcium beryllium silicate which has the potential to be used as piezoelectric material and for other ferroelectric applications. The mineral has been characterized by a combination of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and vibrational spectroscopy. EDS analysis shows a material with high concentrations of Si and Ca and low amounts of Na, Al and F. Beryllium was not detected. Raman bands at 1016 and 1050 cm−1 are assigned to the SiO and AlOH stretching vibrations of three dimensional siloxane units. The infrared spectrum of meliphanite is very broad in comparison with the Raman spectrum. Raman bands at 472 and 510 cm−1 are assigned to OSiO bending modes. Raman spectroscopy identifies bands in the OH stretching region. Raman spectroscopy with complimentary infrared spectroscopy enables the characterization of the silicate mineral meliphanite.
Resumo:
The mineral tunisite has been studied by using a combination of scanning electron microscopy with energy dispersive X-ray fluorescence and vibrational spectroscopy. Chemical analysis shows the presence of Na, Ca, Al and Cl. SEM shows a pure single phase. An intense Raman band at 1127 cm−1 is assigned to the carbonate ν1 symmetric stretching vibration and the Raman band at 1522 cm−1 is assigned to the ν3 carbonate antisymmetric stretching vibration. Infrared bands are observed in similar positions. Multiple carbonate bending modes are found. Raman bands attributable to AlO stretching and bending vibrations are observed. Two Raman bands at 3419 and 3482 cm−1 are assigned to the OH stretching vibrations of the OH units. Vibrational spectroscopy enables aspects of the molecular structure of the carbonate mineral tunisite to be assessed.
Resumo:
In this work we have studied the mineral dawsonite by using a combination of scanning electron microscopy with EDS and vibrational spectroscopy. Single crystals show an acicular habitus forming aggregates with a rosette shape. The chemical analysis shows a phase composed of C, Al, and Na. Two distinct Raman bands at 1091 and 1068 cm−1 are assigned to the CO32− ν1 symmetric stretching mode. Multiple bands are observed in both the Raman and infrared spectra in the antisymmetric stretching and bending regions showing that the symmetry of the carbonate anion is reduced and in all probability the carbonate anions are not equivalent in the dawsonite structure. Multiple OH deformation vibrations centred upon 950 cm−1 in both the Raman and infrared spectra show that the OH units in the dawsonite structure are non-equivalent. Raman bands observed at 3250, 3283 and 3295 cm−1 are assigned to OH stretching vibrations. The position of these bands indicates strong hydrogen bonding of the OH units in the dawsonite structure. The formation of the mineral dawsonite has the potential to offer a mechanism for the geosequestration of greenhouse gases.
Resumo:
Samples of marble from Chillagoe, North Queensland have been analyzed using scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) and Raman spectroscopy. Chemical analyses provide evidence for the presence of minerals other than limestone and calcite in the marble, including silicate minerals. Some of these analyses correspond to silicate minerals. The Raman spectra of these crystals were obtained and the Raman spectrum corresponds to that of allanite from the Arizona State University data base (RRUFF) data base. The combination of SEM with EDS and Raman spectroscopy enables the characterization of the mineral allanite in the Chillagoe marble.
Resumo:
Raman and infrared spectra of the uranyl mineral phurcalite, Ca2(UO2)3O2(PO4)2⋅7H2O, from Red Canyon, Utah, USA, were studied and tentatively interpreted. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (PO4)3− units and to the stretching and bending vibrations and libration modes of water molecules. Approximate lengths of U–O in (UO2)2+ and O–H⋯O hydrogen bond lengths were inferred from observed stretching vibrations. The presence of structurally nonequivalent U6+ and P5+ was inferred from the number of corresponding stretching bands of (UO2)2+ and (PO4)3− units observed in the Raman and infrared spectra..
Resumo:
The mineral coquimbite has been analysed using a range of techniques including SEM with EDX, thermal analytical techniques and Raman and infrared spectroscopy. The mineral originated from the Javier Ortega mine, Lucanas Province, Peru. The chemical formula was determined as ðFe3þ 1:37; Al0:63ÞP2:00ðSO4Þ3 9H2O. Thermal analysis showed a total mass loss of 73.4% on heating to 1000 C. A mass loss of 30.43% at 641.4 C is attributed to the loss of SO3. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of sulphate tetrahedra, aluminium oxide/hydroxide octahedra, water molecules and hydroxyl ions. The Raman spectrum shows well resolved bands at 2994, 3176, 3327, 3422 and 3580 cm 1 attributed to water stretching vibrations. Vibrational spectroscopy combined with thermal analysis provides insight into the structure of coquimbite.
Resumo:
We have studied the boron containing mineral ezcurrite Na4B10O17·7H2O using electron microscopy and vibrational spectroscopy. Both tetrahedral and trigonal boron units are observed. The nominal resolution of the Raman spectrometer is of the order of 2 cm−1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. The Raman band at 1037 cm−1 is assigned to BO stretching vibration. Raman bands at 1129, 1163, 1193 cm−1 are attributed to BO stretching vibration of the tetrahedral units. The Raman band at 947 cm−1 is attributed to the antisymmetric stretching modes of tetrahedral boron. The sharp Raman peak at 1037 cm−1 is from the 11-B component such a mode, then it should have a smaller 10-B satellite near (1.03) × (1037) = 1048 cm−1, and indeed a small peak at 1048 is observed. The broad Raman bands at 3186, 3329, 3431, 3509, 3547 and 3576 cm−1 are assigned to water stretching vibrations. Broad infrared bands at 3170, 3322, 3419, 3450, 3493, 3542, 3577 and 3597 cm−1 are also assigned to water stretching vibrations. Infrared bands at 1330, 1352, 1389, 1407, 1421 and 1457 cm−1 are assigned to the antisymmetric stretching vibrations of trigonal boron. The observation of so many bands suggests that there is considerable variation in the structure of ezcurrite. Infrared bands at 1634, 1646 and 1681 cm−1 are assigned to water bending modes. The number of water bending modes is in harmony with the number of water stretching vibrations.
Resumo:
Raman spectra of two well-defined types of cobaltkoritnigite and koritnigite crystals were recorded and interpreted. Significant differences in the Raman spectra of cobaltkoritnigite and koritnigite were observed. Observed Raman bands were attributed to the (AsO3OH)2− stretching and bending vibrations, stretching and bending vibrations of water molecules and hydroxyl ions. Both Raman and infrared spectra of cobaltkoritnigite identify bands which are attributable to phosphate and hydrogen phosphate anions proving some substitution of phosphate for arsenate in the structure of cobaltkoritnigite. The OH⋯O hydrogen bond lengths in the crystal structure of koritnigite were inferred from the Raman spectra and compared with those derived from the X-ray single crystal refinement. The presence of (AsO3OH)2− units in the crystal structure of cobaltkoritnigite and koritnigite was proved from the Raman spectra which supports the conclusions of the X-ray structure analysis.
Resumo:
Raman spectroscopy complimented with infrared spectroscopy has been used to study the molecular structure of the mineral of plumbophyllite. The Raman spectrum is dominated by a very intense sharp peak at 1027 cm−1, assigned to the SiO stretching vibrations of (SiO3)n units. A very intense Raman band at 643 cm−1 is assigned to the bending mode of (SiO3)n units. Raman bands observed at 3215, 3443, 3470, 3494 and 3567 cm−1 are assigned to water stretching vibrations. Multiple water stretching and bending modes are observed showing that there is much variation in hydrogen bonding between water and the silicate surfaces. Because of the close similarity in the structure of plumbophyllite and apophyllite, a comparison of the spectra with that of apophyllites is made. By using vibrational spectroscopy an assessment of the molecular structure of plumbophyllite has been made.
Resumo:
Phosphohedyphane Ca2Pb3(PO4)3Cl is rare Ca and Pb phosphate mineral that belongs to the apatite supergroup. We have analysed phosphohedyphane using SEM with EDX, and Raman and infrared spectroscopy. The chemical analysis shows the presence of Pb, Ca, P and Cl and the chemical formula is expressed as Ca2Pb3(PO4)3Cl. The very sharp Raman band at 975 cm−1 is assigned to the PO43-ν1 symmetric stretching mode. Raman bands noted at 1073, 1188 and 1226 cm−1 are to the attributed to the PO43-ν3 antisymmetric stretching modes. The two Raman bands at 835 and 812 cm−1 assigned to the AsO43-ν1 symmetric stretching vibration and AsO43-ν3 antisymmetric stretching modes prove the substitution of As for P in the structure of phosphohedyphane. A series of bands at 557, 577 and 595 cm−1 are attributed to the ν4 out of plane bending modes of the PO4 units. The multiplicity of bands in the ν2, ν3 and ν4 spectral regions provides evidence for the loss of symmetry of the phosphate anion in the phosphohedyphane structure. Observed bands were assigned to the stretching and bending vibrations of phosphate tetrahedra. Some Raman bands attributable to OH stretching bands were observed, indicating the presence of water and/or OH units in the structure.
Resumo:
Burkeite formation is important in saline evaporites and in pipe scales. Burkeite is an anhydrous sulphate-carbonate with an apparent variable anion ratio. Such a formula with two oxyanions lends itself to vibrational spectroscopy. Two symmetric sulphate stretching modes are observed, indicating at least at the molecular level the nonequivalence of the sulphate ions in the burkeite structure. The strong Raman band at 1065 cm−1 is assigned to the carbonate symmetric stretching vibration. The series of Raman bands at 622, 635, 645, and 704 cm−1 are assigned to the ν4 sulphate bending modes. The observation of multiple bands supports the concept of a reduction in symmetry of the sulphate anion from T d to C 3v or even C 2v.
Resumo:
The mineral barahonaite is in all probability a member of the smolianinovite group. The mineral is an arsenate mineral formed as a secondary mineral in the oxidized zone of sulphide deposits. We have studied the barahonaite mineral using a combination of Raman and infrared spectroscopy. The mineral is characterized by a series of Raman bands at 863 cm−1 with low wavenumber shoulders at 802 and 828 cm−1. These bands are assigned to the arsenate and hydrogen arsenate stretching vibrations. The infrared spectrum shows a broad spectral profile. Two Raman bands at 506 and 529 cm−1 are assigned to the triply degenerate arsenate bending vibration (F 2, ν4), and the Raman bands at 325, 360, and 399 cm−1 are attributed to the arsenate ν2 bending vibration. Raman and infrared bands in the 2500–3800 cm−1 spectral range are assigned to water and hydroxyl stretching vibrations. The application of Raman spectroscopy to study the structure of barahonaite is better than infrared spectroscopy, probably because of the much higher spatial resolution.
Resumo:
Raman spectra of two well-defined ferrimolybdite samples, Fe23+(Mo6+O4)3·7–8H2O, from the Krupka deposit (northern Bohemia, Czech Republic) and Hůrky near Rakovník occurrence (central Bohemia, Czech Republic) were studied and tentatively interpreted. Observed bands were assigned to the stretching and bending vibrations of molybdate anions, Fe–O units and water molecules. Number of Raman and infrared bands assigned to (MoO4)2− units and water molecules proved that symmetrically (structurally) nonequivalent (MoO4)2− and H2O are present in the crystal structure of ferrimolybdite. Approximate O–H⋯O hydrogen bond lengths (2.80–2.73 Å) were inferred from the published infrared spectra.
Resumo:
We have studied the mineral kornerupine, a borosilicate mineral, by using a combination of scanning electron microscopy with energy-dispersive analysis and Raman and infrared spectroscopy. Qualitative chemical analysis of kornerupine shows a magnesium–aluminum silicate. Strong Raman bands at 925, 995, and 1051 cm−1 with bands of lesser intensity at 1035 and 1084 cm−1 are assigned to the silicon–oxygen stretching vibrations of the siloxane units. Raman bands at 923 and 947 cm−1 are attributed to the symmetrical stretching vibrations of trigonal boron. Infrared spectra show greater complexity and the infrared bands are more difficult to assign. Two intense Raman bands at 3547 and 3612 cm−1 are assigned to the stretching vibrations of hydroxyl units. The infrared bands are observed at 3544 and 3610 cm−1. Water is also identified in the spectra of kornerupine.