314 resultados para BLOOD SERUM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cutaneous cholecalciferol synthesis has not been considered in making recommendations for vitamin D intake. Our objective was to model the effects of sun exposure, vitamin D intake, and skin reflectance (pigmentation) on serum 25-hydroxyvitamin D (25[OH]D) in young adults with a wide range of skin reflectance and sun exposure. Four cohorts of participants (n = 72 total) were studied for 7-8 wk in the fall, winter, spring, and summer in Davis, CA [38.5° N, 121.7° W, Elev. 49 ft (15 m)]. Skin reflectance was measured using a spectrophotometer, vitamin D intake using food records, and sun exposure using polysulfone dosimeter badges. A multiple regression model (R^sup 2^ = 0.55; P < 0.0001) was developed and used to predict the serum 25(OH)D concentration for participants with low [median for African ancestry (AA)] and high [median for European ancestry (EA)] skin reflectance and with low [20th percentile, ~20 min/d, ~18% body surface area (BSA) exposed] and high (80th percentile, ~90 min/d, ~35% BSA exposed) sun exposure, assuming an intake of 200 IU/d (5 ug/d). Predicted serum 25(OH)D concentrations for AA individuals with low and high sun exposure in the winter were 24 and 42 nmol/L and in the summer were 40 and 60 nmol/L. Corresponding values for EA individuals were 35 and 60 nmol/L in the winter and in the summer were 58 and 85 nmol/L. To achieve 25(OH)D ≥75 nmol/L, we estimate that EA individuals with high sun exposure need 1300 IU/d vitamin D intake in the winter and AA individuals with low sun exposure need 2100-3100 IU/d year-round.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2008 the Australian government decided to remove white blood cells from all blood products. This policy of universal leucodepletion was a change to the existing policy of supplying leucodepleted products to high risk patients only. The decision was made without strong information about the cost-effectiveness of universal leucodepletion. The aims for this policy analysis are to generate cost-effectiveness data about universal leucodepletion, and to add to our understanding of the role of evidence and the political reality of healthcare decision-making in Australia. The cost-effectiveness analysis revealed universal leucodepletion costs $398,943 to save one year of life. This exceeds the normal maximum threshold for Australia. We discuss this result within the context of how policy decisions are made about blood, and how it relates to the theory and process of policy making. We conclude that the absence of a strong voice for cost-effectiveness was an important omission in this decision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aim: To investigate participation in a second round of colorectal cancer screening using a fecal occult blood test (FOBT) in an Australian rural community, and to assess the demographic characteristics and individual perspectives associated with repeat screening. ---------- Methods: Potential participants from round 1 (50–74 years of age) were sent an intervention package and asked to return a completed FOBT (n = 3406). Doctors of participants testing positive referred to colonoscopy as appropriate. Following screening, 119 participants completed qualitative telephone interviews. Multivariable logistic regression models evaluated the association between round-2 participation and other variables.---------- Results: Round-2 participation was 34.7%; the strongest predictor was participation in round 1. Repeat participants were more likely to be female; inconsistent screeners were more likely to be younger (aged 50–59 years). The proportion of positive FOBT was 12.7%, that of colonoscopy compliance was 98.6%, and the positive predictive value for cancer or adenoma of advanced pathology was 23.9%. Reasons for participation included testing as a precautionary measure or having family history/friends with colorectal cancer; reasons for non-participation included apathy or doctors’ advice against screening.---------- Conclusion: Participation was relatively low and consistent across rounds. Unless suitable strategies are identified to overcome behavioral trends and/or to screen out ineligible participants, little change in overall participation rates can be expected across rounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absence of cellular immunity is central to the pathogenesis of herpesvirus-mediated diseases after allogeneic hemopoietic stem cell transplantation (HSCT). For both bone marrow (BM)– and granulocyte-colony stimulating factor–mobilized peripheral blood stem cells (PBSCs) HSCT, donor-derived Epstein-Barr virus (EBV) and cytomegalovirus (CMV) peptide–specific CD8+ T cells clones undergo early expansion and persist long-term, with additional diversification arising from novel antigen-specific clones from donor-derived progenitors. Whether BM or PBSC is the superior source of antiviral CD8+ T cells is unclear. Given that PBSC has largely replaced BM as a source of stem cells for HSCT, it is unlikely that herpesvirus effector T-cell reconstitution will ever be compared prospectively. PBSC grafts contain 10 to 30 times more T cells than BM and a randomized study found proven viral infections were more frequent in BM than PBSC recipients, suggesting viral-specific T-cell immunity is enhanced in PBSC. Recently Moss showed in lung cancer patients that herpesvirus-specific BM-derived CD8+ T cells have unique homing properties relative to herpesvirus-specific CD8+ T cells present in unmobilized peripheral blood (PB). Immunodominant EBV-lytic peptide–specific CD8+ T cells were enriched in BM but were reduced for CMV peptide–specific CD8+ T cells relative to PB. EBV-latent peptide–specific CD8+ T cells were equivalent, which has relevance in the context of posttransplantation lymphoproliferative disorder for which impaired EBV-latent CD8+ T-cell immunity is a risk-factor. A comparison of herpesvirus-specific cellular immunity in PBSC versus PB has yet to be performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper was retracted by the Journal of Stem Cells and Development on February 15, 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impedance cardiography is an application of bioimpedance analysis primarily used in a research setting to determine cardiac output. It is a non invasive technique that measures the change in the impedance of the thorax which is attributed to the ejection of a volume of blood from the heart. The cardiac output is calculated from the measured impedance using the parallel conductor theory and a constant value for the resistivity of blood. However, the resistivity of blood has been shown to be velocity dependent due to changes in the orientation of red blood cells induced by changing shear forces during flow. The overall goal of this thesis was to study the effect that flow deviations have on the electrical impedance of blood, both experimentally and theoretically, and to apply the results to a clinical setting. The resistivity of stationary blood is isotropic as the red blood cells are randomly orientated due to Brownian motion. In the case of blood flowing through rigid tubes, the resistivity is anisotropic due to the biconcave discoidal shape and orientation of the cells. The generation of shear forces across the width of the tube during flow causes the cells to align with the minimal cross sectional area facing the direction of flow. This is in order to minimise the shear stress experienced by the cells. This in turn results in a larger cross sectional area of plasma and a reduction in the resistivity of the blood as the flow increases. Understanding the contribution of this effect on the thoracic impedance change is a vital step in achieving clinical acceptance of impedance cardiography. Published literature investigates the resistivity variations for constant blood flow. In this case, the shear forces are constant and the impedance remains constant during flow at a magnitude which is less than that for stationary blood. The research presented in this thesis, however, investigates the variations in resistivity of blood during pulsataile flow through rigid tubes and the relationship between impedance, velocity and acceleration. Using rigid tubes isolates the impedance change to variations associated with changes in cell orientation only. The implications of red blood cell orientation changes for clinical impedance cardiography were also explored. This was achieved through measurement and analysis of the experimental impedance of pulsatile blood flowing through rigid tubes in a mock circulatory system. A novel theoretical model including cell orientation dynamics was developed for the impedance of pulsatile blood through rigid tubes. The impedance of flowing blood was theoretically calculated using analytical methods for flow through straight tubes and the numerical Lattice Boltzmann method for flow through complex geometries such as aortic valve stenosis. The result of the analytical theoretical model was compared to the experimental impedance measurements through rigid tubes. The impedance calculated for flow through a stenosis using the Lattice Boltzmann method provides results for comparison with impedance cardiography measurements collected as part of a pilot clinical trial to assess the suitability of using bioimpedance techniques to assess the presence of aortic stenosis. The experimental and theoretical impedance of blood was shown to inversely follow the blood velocity during pulsatile flow with a correlation of -0.72 and -0.74 respectively. The results for both the experimental and theoretical investigations demonstrate that the acceleration of the blood is an important factor in determining the impedance, in addition to the velocity. During acceleration, the relationship between impedance and velocity is linear (r2 = 0.98, experimental and r2 = 0.94, theoretical). The relationship between the impedance and velocity during the deceleration phase is characterised by a time decay constant, ô , ranging from 10 to 50 s. The high level of agreement between the experimental and theoretically modelled impedance demonstrates the accuracy of the model developed here. An increase in the haematocrit of the blood resulted in an increase in the magnitude of the impedance change due to changes in the orientation of red blood cells. The time decay constant was shown to decrease linearly with the haematocrit for both experimental and theoretical results, although the slope of this decrease was larger in the experimental case. The radius of the tube influences the experimental and theoretical impedance given the same velocity of flow. However, when the velocity was divided by the radius of the tube (labelled the reduced average velocity) the impedance response was the same for two experimental tubes with equivalent reduced average velocity but with different radii. The temperature of the blood was also shown to affect the impedance with the impedance decreasing as the temperature increased. These results are the first published for the impedance of pulsatile blood. The experimental impedance change measured orthogonal to the direction of flow is in the opposite direction to that measured in the direction of flow. These results indicate that the impedance of blood flowing through rigid cylindrical tubes is axisymmetric along the radius. This has not previously been verified experimentally. Time frequency analysis of the experimental results demonstrated that the measured impedance contains the same frequency components occuring at the same time point in the cycle as the velocity signal contains. This suggests that the impedance contains many of the fluctuations of the velocity signal. Application of a theoretical steady flow model to pulsatile flow presented here has verified that the steady flow model is not adequate in calculating the impedance of pulsatile blood flow. The success of the new theoretical model over the steady flow model demonstrates that the velocity profile is important in determining the impedance of pulsatile blood. The clinical application of the impedance of blood flow through a stenosis was theoretically modelled using the Lattice Boltzman method (LBM) for fluid flow through complex geometeries. The impedance of blood exiting a narrow orifice was calculated for varying degrees of stenosis. Clincial impedance cardiography measurements were also recorded for both aortic valvular stenosis patients (n = 4) and control subjects (n = 4) with structurally normal hearts. This pilot trial was used to corroborate the results of the LBM. Results from both investigations showed that the decay time constant for impedance has potential in the assessment of aortic valve stenosis. In the theoretically modelled case (LBM results), the decay time constant increased with an increase in the degree of stenosis. The clinical results also showed a statistically significant difference in time decay constant between control and test subjects (P = 0.03). The time decay constant calculated for test subjects (ô = 180 - 250 s) is consistently larger than that determined for control subjects (ô = 50 - 130 s). This difference is thought to be due to difference in the orientation response of the cells as blood flows through the stenosis. Such a non-invasive technique using the time decay constant for screening of aortic stenosis provides additional information to that currently given by impedance cardiography techniques and improves the value of the device to practitioners. However, the results still need to be verified in a larger study. While impedance cardiography has not been widely adopted clinically, it is research such as this that will enable future acceptance of the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium spp. parasites cause malaria in 300 to 500 million individuals each year. Disease occurs during the blood-stage of the parasite’s life cycle, where the parasite is thought to replicate exclusively within erythrocytes. Infected individuals can also suffer relapses after several years, from Plasmodium vivax and Plasmodium ovale surviving in hepatocytes. Plasmodium falciparum and Plasmodium malariae can also persist after the original bout of infection has apparently cleared in the blood, suggesting that host cells other than erythrocytes (but not hepatocytes) may harbor these blood-stage parasites, thereby assisting their escape from host immunity. Using blood stage transgenic Plasmodium berghei-expressing GFP (PbGFP) to track parasites in host cells, we found that the parasite had a tropism for CD317+ dendritic cells. Other studies using confocal microscopy, in vitro cultures, and cell transfer studies showed that blood-stage parasites could infect, survive, and replicate within CD317+ dendritic cells, and that small numbers of these cells released parasites infectious for erythrocytes in vivo. These data have identified a unique survival strategy for blood-stage Plasmodium, which has significant implications for understanding the escape of Plasmodium spp. from immune-surveillance and for vaccine development.