171 resultados para At-fault crash
Resumo:
The observing failure and feedback instability might happen when the partial sensors of a satellite attitude control system (SACS) go wrong. A fault diagnosis and isolation (FDI) method based on a fault observer is introduced to detect and isolate the fault sensor at first. Based on the FDI result, the object system state-space equation is transformed and divided into a corresponsive triangular canonical form to decouple the normal subsystem from the fault subsystem. And then the KX fault-tolerant observers of the system in different modes are designed and embedded into online monitoring. The outputs of all KX fault-tolerant observers are selected by the control switch process. That can make sense that the SACS is part-observed and in stable when the partial sensors break down. Simulation results demonstrate the effectiveness and superiority of the proposed method.
Resumo:
Prevention and safety promotion programmes. Traditionally, in-depth investigations of crash risks are conducted using exposure controlled study or case-control methodology. However, these studies need either observational data for control cases or exogenous exposure data like vehicle-kilometres travel, entry flow or product of conflicting flow for a particular traffic location, or a traffic site. These data are not readily available and often require extensive data collection effort on a system-wide basis. Aim: The objective of this research is to propose an alternative methodology to investigate crash risks of a road user group in different circumstances using readily available traffic police crash data. Methods: This study employs a combination of a log-linear model and the quasi-induced exposure technique to estimate crash risks of a road user group. While the log-linear model reveals the significant interactions and thus the prevalence of crashes of a road user group under various sets of traffic, environmental and roadway factors, the quasi-induced exposure technique estimates relative exposure of that road user in the same set of explanatory variables. Therefore, the combination of these two techniques provides relative measures of crash risks under various influences of roadway, environmental and traffic conditions. The proposed methodology has been illustrated using Brisbane motorcycle crash data of five years. Results: Interpretations of results on different combination of interactive factors show that the poor conspicuity of motorcycles is a predominant cause of motorcycle crashes. Inability of other drivers to correctly judge the speed and distance of an oncoming motorcyclist is also evident in right-of-way violation motorcycle crashes at intersections. Discussion and Conclusions: The combination of a log-linear model and the induced exposure technique is a promising methodology and can be applied to better estimate crash risks of other road users. This study also highlights the importance of considering interaction effects to better understand hazardous situations. A further study on the comparison between the proposed methodology and case-control method would be useful.
Resumo:
The National Road Safety Strategy 2011-2020 outlines plans to reduce the burden of road trauma via improvements and interventions relating to safe roads, safe speeds, safe vehicles, and safe people. It also highlights that a key aspect in achieving these goals is the availability of comprehensive data on the issue. The use of data is essential so that more in-depth epidemiologic studies of risk can be conducted as well as to allow effective evaluation of road safety interventions and programs. Before utilising data to evaluate the efficacy of prevention programs it is important for a systematic evaluation of the quality of underlying data sources to be undertaken to ensure any trends which are identified reflect true estimates rather than spurious data effects. However, there has been little scientific work specifically focused on establishing core data quality characteristics pertinent to the road safety field and limited work undertaken to develop methods for evaluating data sources according to these core characteristics. There are a variety of data sources in which traffic-related incidents and resulting injuries are recorded, which are collected for a variety of defined purposes. These include police reports, transport safety databases, emergency department data, hospital morbidity data and mortality data to name a few. However, as these data are collected for specific purposes, each of these data sources suffers from some limitations when seeking to gain a complete picture of the problem. Limitations of current data sources include: delays in data being available, lack of accurate and/or specific location information, and an underreporting of crashes involving particular road user groups such as cyclists. This paper proposes core data quality characteristics that could be used to systematically assess road crash data sources to provide a standardised approach for evaluating data quality in the road safety field. The potential for data linkage to qualitatively and quantitatively improve the quality and comprehensiveness of road crash data is also discussed.
Resumo:
Advances in safety research—trying to improve the collective understanding of motor vehicle crash causes and contributing factors—rest upon the pursuit of numerous lines of research inquiry. The research community has focused considerable attention on analytical methods development (negative binomial models, simultaneous equations, etc.), on better experimental designs (before-after studies, comparison sites, etc.), on improving exposure measures, and on model specification improvements (additive terms, non-linear relations, etc.). One might logically seek to know which lines of inquiry might provide the most significant improvements in understanding crash causation and/or prediction. It is the contention of this paper that the exclusion of important variables (causal or surrogate measures of causal variables) cause omitted variable bias in model estimation and is an important and neglected line of inquiry in safety research. In particular, spatially related variables are often difficult to collect and omitted from crash models—but offer significant opportunities to better understand contributing factors and/or causes of crashes. This study examines the role of important variables (other than Average Annual Daily Traffic (AADT)) that are generally omitted from intersection crash prediction models. In addition to the geometric and traffic regulatory information of intersection, the proposed model includes many spatial factors such as local influences of weather, sun glare, proximity to drinking establishments, and proximity to schools—representing a mix of potential environmental and human factors that are theoretically important, but rarely used. Results suggest that these variables in addition to AADT have significant explanatory power, and their exclusion leads to omitted variable bias. Provided is evidence that variable exclusion overstates the effect of minor road AADT by as much as 40% and major road AADT by 14%.
Resumo:
This paper investigates relationship between traffic conditions and the crash occurrence likelihood (COL) using the I-880 data. To remedy the data limitations and the methodological shortcomings suffered by previous studies, a multiresolution data processing method is proposed and implemented, upon which binary logistic models were developed. The major findings of this paper are: 1) traffic conditions have significant impacts on COL at the study site; Specifically, COL in a congested (transitioning) traffic flow is about 6 (1.6) times of that in a free flow condition; 2)Speed variance alone is not sufficient to capture traffic dynamics’ impact on COL; a traffic chaos indicator that integrates speed, speed variance, and flow is proposed and shows a promising performance; 3) Models based on aggregated data shall be interpreted with caution. Generally, conclusions obtained from such models shall not be generalized to individual vehicles (drivers) without further evidences using high-resolution data and it is dubious to either claim or disclaim speed kills based on aggregated data.
Resumo:
- Road safety implications of unlicensed driving - Present results from two studies conducted in Queensland examining: - the crash involvement of unlicensed drivers and the risks associated with the behaviour - the prevalence of unlicensed driving using a roadside survey method - Countermeasure options
Resumo:
Crash statistics in Singapore from 2001 to 2005 have shown that motorcycles are involved in about 54% of intersection crashes. The overall involvement of motorcycles in crashes as the not-at-fault party is about 43% but at intersections, the corresponding percentage is increased to 57%. Quasi-induced exposure estimates show that the motorcycle exposure rate at signalized intersections is 41.7% even though motorcycles account for only 19% of the vehicle population. This study seeks to examine in greater details, the problem of motorcycle exposure at signalized intersections. In particular, the exposure arising from potential crashes with red light running vehicles from the conflicting stream at four signalized intersections is investigated. The results show that motorcycles are more exposed because they tend to accumulate near the stop-line during the red phase to facilitate an earlier discharge during the initial period of the green which is the more vulnerable period. At sites where there are more weaving opportunities because the lanes are wider or where there are exclusive right-turn lanes, the accumulation is higher and hence an increased exposure is observed. The analysis also shows that the presence of heavy vehicles tends to decrease motorcycle exposure as their weaving opportunities become restricted as well as there is a greater reluctance for them to weave past or queue alongside the heavy vehicles and their effects intensify for narrower lane width.
Resumo:
This study proposes a framework of a model-based hot spot identification method by applying full Bayes (FB) technique. In comparison with the state-of-the-art approach [i.e., empirical Bayes method (EB)], the advantage of the FB method is the capability to seamlessly integrate prior information and all available data into posterior distributions on which various ranking criteria could be based. With intersection crash data collected in Singapore, an empirical analysis was conducted to evaluate the following six approaches for hot spot identification: (a) naive ranking using raw crash data, (b) standard EB ranking, (c) FB ranking using a Poisson-gamma model, (d) FB ranking using a Poisson-lognormal model, (e) FB ranking using a hierarchical Poisson model, and (f) FB ranking using a hierarchical Poisson (AR-1) model. The results show that (a) when using the expected crash rate-related decision parameters, all model-based approaches perform significantly better in safety ranking than does the naive ranking method, and (b) the FB approach using hierarchical models significantly outperforms the standard EB approach in correctly identifying hazardous sites.
Resumo:
Traditional crash prediction models, such as generalized linear regression models, are incapable of taking into account the multilevel data structure, which extensively exists in crash data. Disregarding the possible within-group correlations can lead to the production of models giving unreliable and biased estimates of unknowns. This study innovatively proposes a -level hierarchy, viz. (Geographic region level – Traffic site level – Traffic crash level – Driver-vehicle unit level – Vehicle-occupant level) Time level, to establish a general form of multilevel data structure in traffic safety analysis. To properly model the potential cross-group heterogeneity due to the multilevel data structure, a framework of Bayesian hierarchical models that explicitly specify multilevel structure and correctly yield parameter estimates is introduced and recommended. The proposed method is illustrated in an individual-severity analysis of intersection crashes using the Singapore crash records. This study proved the importance of accounting for the within-group correlations and demonstrated the flexibilities and effectiveness of the Bayesian hierarchical method in modeling multilevel structure of traffic crash data.
Resumo:
Introduction: In Singapore, motorcycle crashes account for 50% of traffic fatalities and 53% of injuries. While extensive research efforts have been devoted to improve the motorcycle safety, the relationship between the rider behavior and the crash risk is still not well understood. The objective of this study is to evaluate how behavioral factors influence crash risk and to identify the most vulnerable group of motorcyclists. Methods: To explore the rider behavior, a 61-item questionnaire examining sensation seeking (Zuckerman et al., 1978), impulsiveness (Eysenck et al., 1985), aggressiveness (Buss & Perry, 1992), and risk-taking behavior (Weber et al., 2002) was developed. A total of 240 respondents with at least one year riding experience form the sample that relate behavior to their crash history, traffic penalty awareness, and demographic characteristics. By clustering the crash risk using the medoid portioning algorithm, the log-linear model relating the rider behavior to crash risk was developed. Results and Discussions: Crash-involved motorcyclists scored higher in impulsive sensation seeking, aggression and risk-taking behavior. Aggressive and high risk-taking motorcyclists were respectively 1.30 and 2.21 times more likely to fall under the high crash involvement group while impulsive sensation seeking was not found to be significant. Based on the scores on risk-taking and aggression, the motorcyclists were clustered into four distinct personality combinations namely, extrovert (aggressive, impulsive risk-takers), leader (cautious, aggressive risk-takers), follower (agreeable, ignorant risk-takers), and introvert (self-consciousness, fainthearted risk-takers). “Extrovert” motorcyclists were most prone to crashes, being 3.34 times more likely to involve in crash and 8.29 times more vulnerable than the “introvert”. Mediating factors like demographic characteristics, riding experience, and traffic penalty awareness were found not to be significant in reducing crash risk. Conclusion: The findings of this study will be useful for road safety campaign planners to be more focused in the target group as well as those who employ motorcyclists for their delivery business.
Resumo:
The authors present a Cause-Effect fault diagnosis model, which utilises the Root Cause Analysis approach and takes into account the technical features of a digital substation. The Dempster/Shafer evidence theory is used to integrate different types of fault information in the diagnosis model so as to implement a hierarchical, systematic and comprehensive diagnosis based on the logic relationship between the parent and child nodes such as transformer/circuit-breaker/transmission-line, and between the root and child causes. A real fault scenario is investigated in the case study to demonstrate the developed approach in diagnosing malfunction of protective relays and/or circuit breakers, miss or false alarms, and other commonly encountered faults at a modern digital substation.
Resumo:
Traditional analytic models for power system fault diagnosis are usually formulated as an unconstrained 0–1 integer programming problem. The key issue of the models is to seek the fault hypothesis that minimizes the discrepancy between the actual and the expected states of the concerned protective relays and circuit breakers. The temporal information of alarm messages has not been well utilized in these methods, and as a result, the diagnosis results may be not unique and hence indefinite, especially when complicated and multiple faults occur. In order to solve this problem, this paper presents a novel analytic model employing the temporal information of alarm messages along with the concept of related path. The temporal relationship among the actions of protective relays and circuit breakers, and the different protection configurations in a modern power system can be reasonably represented by the developed model, and therefore, the diagnosed results will be more definite under different circumstances of faults. Finally, an actual power system fault was served to verify the proposed method.
Resumo:
Tourist use of mopeds in Queensland is encouraged by licensing regulations permitting moped riding for car licence holders, who may lack prior knowledge or experience of moped or motorcycle use. Using official crash and registration data, this research examines moped use by tourists, identified as crash-involved riders holding an interstate or overseas licence. Tourists were more likely to be younger, female, in single vehicle crashes, and deemed at fault than Queensland licence holders. Potential safety issues include poor riding skills, inexperience, inattention and lack of protective clothing. Moped rental companies play an important role in managing client crash and injury risks. These risks could also be reduced through introduction of more stringent licensing requirements, though this may be detrimental to moped rental companies as well as to tourist mobility and enjoyment. The discussion considers the relevance of adventure tourism perspectives and theory to the use of mopeds by tourists.