86 resultados para Artificial tooth
Resumo:
Time-expanded and heterodyned echolocation calls of the New Zealand long-tailed Chalinolobus tuberculatus and lesser short-tailed bat Mystacina tuberculata were recorded and digitally analysed. Temporal and spectral parameters were measured from time-expanded calls and power spectra generated for both time-expanded and heterodyned calls. Artificial neural networks were trained to classify the calls of both species using temporal and spectral parameters and power spectra as input data. Networks were then tested using data not previously seen. Calls could be unambiguously identified using parameters and power spectra from time-expanded calls. A neural network, trained and tested using power spectra of calls from both species recorded using a heterodyne detector set to 40 kHz (the frequency with the most energy of the fundamental of C. tuberculatus call), could identify 99% and 84% of calls of C. tuberculatus and M. tuberculata, respectively. A second network, trained and tested using power spectra of calls from both species recorded using a heterodyne detector set to 27 kHz (the frequency with the most energy of the fundamental of M. tuberculata call), could identify 34% and 100% of calls of C. tuberculatus and M. tuberculata, respectively. This study represents the first use of neural networks for the identification of bats from their echolocation calls. It is also the first study to use power spectra of time-expanded and heterodyned calls for identification of chiropteran species. The ability of neural networks to identify bats from their echolocation calls is discussed, as is the ecology of both species in relation to the design of their echolocation calls.
Resumo:
We recorded echolocation calls from 14 sympatric species of bat in Britain. Once digitised, one temporal and four spectral features were measured from each call. The frequency-time course of each call was approximated by fitting eight mathematical functions, and the goodness of fit, represented by the mean-squared error, was calculated. Measurements were taken using an automated process that extracted a single call from background noise and measured all variables without intervention. Two species of Rhinolophus were easily identified from call duration and spectral measurements. For the remaining 12 species, discriminant function analysis and multilayer back-propagation perceptrons were used to classify calls to species level. Analyses were carried out with and without the inclusion of curve-fitting data to evaluate its usefulness in distinguishing among species. Discriminant function analysis achieved an overall correct classification rate of 79% with curve-fitting data included, while an artificial neural network achieved 87%. The removal of curve-fitting data improved the performance of the discriminant function analysis by 2 %, while the performance of a perceptron decreased by 2 %. However, an increase in correct identification rates when curve-fitting information was included was not found for all species. The use of a hierarchical classification system, whereby calls were first classified to genus level and then to species level, had little effect on correct classification rates by discriminant function analysis but did improve rates achieved by perceptrons. This is the first published study to use artificial neural networks to classify the echolocation calls of bats to species level. Our findings are discussed in terms of recent advances in recording and analysis technologies, and are related to factors causing convergence and divergence of echolocation call design in bats.
Resumo:
We recorded echolocation calls from 14 sympatric species of bat in Britain. Once digitised, one temporal and four spectral features were measured from each call. The frequency-time course of each call was approximated by fitting eight mathematical functions, and the goodness of fit, represented by the mean-squared error, was calculated. Measurements were taken using an automated process that extracted a single call from background noise and measured all variables without intervention. Two species of Rhinolophus were easily identified from call duration and spectral measurements. For the remaining 12 species, discriminant function analysis and multilayer back-propagation perceptrons were used to classify calls to species level. Analyses were carried out with and without the inclusion of curve-fitting data to evaluate its usefulness in distinguishing among species. Discriminant function analysis achieved an overall correct classification rate of 79% with curve-fitting data included, while an artificial neural network achieved 87%. The removal of curve-fitting data improved the performance of the discriminant function analysis by 2 %, while the performance of a perceptron decreased by 2 %. However, an increase in correct identification rates when curve-fitting information was included was not found for all species. The use of a hierarchical classification system, whereby calls were first classified to genus level and then to species level, had little effect on correct classification rates by discriminant function analysis but did improve rates achieved by perceptrons. This is the first published study to use artificial neural networks to classify the echolocation calls of bats to species level. Our findings are discussed in terms of recent advances in recording and analysis technologies, and are related to factors causing convergence and divergence of echolocation call design in bats.
Resumo:
Nowadays, demand for automated Gas metal arc welding (GMAW) is growing and consequently need for intelligent systems is increased to ensure the accuracy of the procedure. To date, welding pool geometry has been the most used factor in quality assessment of intelligent welding systems. But, it has recently been found that Mahalanobis Distance (MD) not only can be used for this purpose but also is more efficient. In the present paper, Artificial Neural Networks (ANN) has been used for prediction of MD parameter. However, advantages and disadvantages of other methods have been discussed. The Levenberg–Marquardt algorithm was found to be the most effective algorithm for GMAW process. It is known that the number of neurons plays an important role in optimal network design. In this work, using trial and error method, it has been found that 30 is the optimal number of neurons. The model has been investigated with different number of layers in Multilayer Perceptron (MLP) architecture and has been shown that for the aim of this work the optimal result is obtained when using MLP with one layer. Robustness of the system has been evaluated by adding noise into the input data and studying the effect of the noise in prediction capability of the network. The experiments for this study were conducted in an automated GMAW setup that was integrated with data acquisition system and prepared in a laboratory for welding of steel plate with 12 mm in thickness. The accuracy of the network was evaluated by Root Mean Squared (RMS) error between the measured and the estimated values. The low error value (about 0.008) reflects the good accuracy of the model. Also the comparison of the predicted results by ANN and the test data set showed very good agreement that reveals the predictive power of the model. Therefore, the ANN model offered in here for GMA welding process can be used effectively for prediction goals.
Resumo:
Details the developments to date of an unmanned air vehicle (UAV) based on a standard size 60 model helicopter. The design goal is to have the helicopter achieve stable hover with the aid of an INS and stereo vision. The focus of the paper is on the development of an artificial neural network (ANN) that makes use of only the INS data to generate hover commands, which are used to directly manipulate the flight servos. Current results show that networks incorporating some form of recurrency (state history) offer little advantage over those without. At this stage, the ANN has partially maintained periods of hover even with misaligned sensors.
Consent for third molar tooth extractions in Australia and New Zealand: A review of current practice
Resumo:
Background Informed consent is the legal requirement to educate a patient about a proposed medical treatment or procedure so that he or she can make informed decisions. The purpose of the study was to examine the current practice for obtaining informed consent for third molar tooth extractions (wisdom teeth) by Oral and Maxillofacial Surgeons in Australia and New Zealand. Methods An online survey was sent to 180 consultant Oral and Maxillofacial Surgeons in Australia and New Zealand. Surgeons were asked to answer (yes/no) whether they routinely warned of a specific risk of third molar tooth extraction in their written consent. Results 71 replies were received (39%). The only risks that surgeons agreed should be routinely included in written consent were a general warning of infection (not alveolar osteitis), inferior alveolar nerve damage (temporary and permanent) and lingual nerve damage (temporary and permanent). Conclusions There is significant variability among Australian and New Zealand Oral and Maxillofacial Surgeons regarding risk disclosure for third molar tooth extractions. We aim to improve consistency in consent for third molar extractions by developing an evidence-based consent form.
Resumo:
In this report an artificial neural network (ANN) based automated emergency landing site selection system for unmanned aerial vehicle (UAV) and general aviation (GA) is described. The system aims increase safety of UAV operation by emulating pilot decision making in emergency landing scenarios using an ANN to select a safe landing site from available candidates. The strength of an ANN to model complex input relationships makes it a perfect system to handle the multicriteria decision making (MCDM) process of emergency landing site selection. The ANN operates by identifying the more favorable of two landing sites when provided with an input vector derived from both landing site's parameters, the aircraft's current state and wind measurements. The system consists of a feed forward ANN, a pre-processor class which produces ANN input vectors and a class in charge of creating a ranking of landing site candidates using the ANN. The system was successfully implemented in C++ using the FANN C++ library and ROS. Results obtained from ANN training and simulations using randomly generated landing sites by a site detection simulator data verify the feasibility of an ANN based automated emergency landing site selection system.
Resumo:
The purpose of this study was to establish a three-dimensional fluorescent tooth model to investigate bacterial viability against intra-canal medicaments across the thickness and surface of root dentine. Dental microbial biofilms (Enterococcus faecalis and Streptococcus mutans) were established on the external root surface and bacterial kill was monitored over time against intra-canal medicament (Ca(OH)2 ) using fluorescent microscopy in conjunction with BacLight SYTO9 and propidium iodide stains. An Olympus digital camera fitted to SZX16 fluorescent microscope captured images of bacterial cells in biofilms on the external root surface. Viability of biofilm was measured by calculating the total pixel area of green (viable bacteria) and red (non-viable bacteria) for each image using ImageJ® software. All data generated were assessed for normality and then analysed using a Mann-Whitney t-test. The viability of S. mutans biofilm following Ca(OH)2 treatment showed a significant decline compared with the untreated group (P = 0.0418). No significant difference was seen for E. faecalis biofilm between the Ca(OH)2 and untreated groups indicating Ca(OH)2 medicament is ineffective against E. faecalis biofilm. This novel three-dimensional fluorescent biofilm model provides a new clinically relevant tool for testing of medicaments against dental biofilms.
Resumo:
This article examines the development of a specific gendered discourse in the United States in the first half of the twentieth century that united key beliefs about feminine beauty, identity, and the domestic interior with particular electric lighting technologies and effects. Largely driven by the electrical industry’s marketing rhetoric, American women were encouraged to adopt electric lighting as a beauty aid and ally in a host of domestic tasks. Drawing evidence from a number of primary texts, including women’s magazines, lighting and electrical industry trade journals, manufacturer-generated marketing materials, and popular home decoration and beauty advice literature, this study shifts the focus away from lighting as a basic utility, demonstrating the ways in which modern electric illumination was culturally constructed as a desirable personal and environmental beautifier as well as a means of harmonizing the domestic interior.
Resumo:
Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.
Resumo:
In the first half of the twentieth century the dematerializing of boundaries between enclosure and exposure problematized traditional acts of “occupation” and understandings of the domestic environment. As a space of escalating technological control, the modern domestic interior offered new potential to re-define the meaning and means of habitation. This shift is clearly expressed in the transformation of electric lighting technology and applications for the modern interior in the mid-twentieth century. Addressing these issues, this paper examines the critical role of electric lighting in regulating and framing both the public and private occupation of Philip Johnson’s New Canaan estate. Exploring the dialectically paired transparent Glass House and opaque Guest House (both 1949), this study illustrates how Johnson employed artificial light to control the visual environment of the estate as well as to aestheticize the performance of domestic space. Looking closely at the use of artificial light to create emotive effects as well as to intensify the experience of occupation, this revisiting of the iconic Glass House and lesser-known Guest House provides a more complex understanding of Johnson’s work and the means with which he inhabited his own architecture. Calling attention to the importance of Johnson serving as both architect and client, and his particular interest in exploring the new potential of architectural lighting in this period, this paper investigates Johnson’s use of electric light to support architectural narratives, maintain visual order and control, and to suit the nuanced desires of domestic occupation.