99 resultados para Artificial antibody
Resumo:
Automated remote ultrasound detectors allow large amounts of data on bat presence and activity to be collected. Processing of such data involves identifying bat species from their echolocation calls. Automated species identification has the potential to provide more consistent, predictable, and potentially higher levels of accuracy than identification by humans. In contrast, identification by humans permits flexibility and intelligence in identification, as well as the incorporation of features and patterns that may be difficult to quantify. We compared humans with artificial neural networks (ANNs) in their ability to classify short recordings of bat echolocation calls of variable signal to noise ratios; these sequences are typical of those obtained from remote automated recording systems that are often used in large-scale ecological studies. We presented 45 recordings (1–4 calls) produced by known species of bats to ANNs and to 26 human participants with 1 month to 23 years of experience in acoustic identification of bats. Humans correctly classified 86% of recordings to genus and 56% to species; ANNs correctly identified 92% and 62%, respectively. There was no significant difference between the performance of ANNs and that of humans, but ANNs performed better than about 75% of humans. There was little relationship between the experience of the human participants and their classification rate. However, humans with <1 year of experience performed worse than others. Currently, identification of bat echolocation calls by humans is suitable for ecological research, after careful consideration of biases. However, improvements to ANNs and the data that they are trained on may in future increase their performance to beyond those demonstrated by humans.
Resumo:
Time-expanded and heterodyned echolocation calls of the New Zealand long-tailed Chalinolobus tuberculatus and lesser short-tailed bat Mystacina tuberculata were recorded and digitally analysed. Temporal and spectral parameters were measured from time-expanded calls and power spectra generated for both time-expanded and heterodyned calls. Artificial neural networks were trained to classify the calls of both species using temporal and spectral parameters and power spectra as input data. Networks were then tested using data not previously seen. Calls could be unambiguously identified using parameters and power spectra from time-expanded calls. A neural network, trained and tested using power spectra of calls from both species recorded using a heterodyne detector set to 40 kHz (the frequency with the most energy of the fundamental of C. tuberculatus call), could identify 99% and 84% of calls of C. tuberculatus and M. tuberculata, respectively. A second network, trained and tested using power spectra of calls from both species recorded using a heterodyne detector set to 27 kHz (the frequency with the most energy of the fundamental of M. tuberculata call), could identify 34% and 100% of calls of C. tuberculatus and M. tuberculata, respectively. This study represents the first use of neural networks for the identification of bats from their echolocation calls. It is also the first study to use power spectra of time-expanded and heterodyned calls for identification of chiropteran species. The ability of neural networks to identify bats from their echolocation calls is discussed, as is the ecology of both species in relation to the design of their echolocation calls.
Resumo:
We recorded echolocation calls from 14 sympatric species of bat in Britain. Once digitised, one temporal and four spectral features were measured from each call. The frequency-time course of each call was approximated by fitting eight mathematical functions, and the goodness of fit, represented by the mean-squared error, was calculated. Measurements were taken using an automated process that extracted a single call from background noise and measured all variables without intervention. Two species of Rhinolophus were easily identified from call duration and spectral measurements. For the remaining 12 species, discriminant function analysis and multilayer back-propagation perceptrons were used to classify calls to species level. Analyses were carried out with and without the inclusion of curve-fitting data to evaluate its usefulness in distinguishing among species. Discriminant function analysis achieved an overall correct classification rate of 79% with curve-fitting data included, while an artificial neural network achieved 87%. The removal of curve-fitting data improved the performance of the discriminant function analysis by 2 %, while the performance of a perceptron decreased by 2 %. However, an increase in correct identification rates when curve-fitting information was included was not found for all species. The use of a hierarchical classification system, whereby calls were first classified to genus level and then to species level, had little effect on correct classification rates by discriminant function analysis but did improve rates achieved by perceptrons. This is the first published study to use artificial neural networks to classify the echolocation calls of bats to species level. Our findings are discussed in terms of recent advances in recording and analysis technologies, and are related to factors causing convergence and divergence of echolocation call design in bats.
Resumo:
We recorded echolocation calls from 14 sympatric species of bat in Britain. Once digitised, one temporal and four spectral features were measured from each call. The frequency-time course of each call was approximated by fitting eight mathematical functions, and the goodness of fit, represented by the mean-squared error, was calculated. Measurements were taken using an automated process that extracted a single call from background noise and measured all variables without intervention. Two species of Rhinolophus were easily identified from call duration and spectral measurements. For the remaining 12 species, discriminant function analysis and multilayer back-propagation perceptrons were used to classify calls to species level. Analyses were carried out with and without the inclusion of curve-fitting data to evaluate its usefulness in distinguishing among species. Discriminant function analysis achieved an overall correct classification rate of 79% with curve-fitting data included, while an artificial neural network achieved 87%. The removal of curve-fitting data improved the performance of the discriminant function analysis by 2 %, while the performance of a perceptron decreased by 2 %. However, an increase in correct identification rates when curve-fitting information was included was not found for all species. The use of a hierarchical classification system, whereby calls were first classified to genus level and then to species level, had little effect on correct classification rates by discriminant function analysis but did improve rates achieved by perceptrons. This is the first published study to use artificial neural networks to classify the echolocation calls of bats to species level. Our findings are discussed in terms of recent advances in recording and analysis technologies, and are related to factors causing convergence and divergence of echolocation call design in bats.
Resumo:
Transfusion-related acute lung injury (TRALI) has been the leading cause of transfusion-related morbidity and mortality in the UK and the USA in recent years. A threshold mechanism of TRALI has been proposed in which both patient factors (type and/or severity of clinical insult) and blood product factors (strength and/or concentration of antibodies or biological response modifiers) interact to surpass a threshold for TRALI development (Bux et al. Br J Haematol; 2007; 136: 788-99). The risk of developing antibody-mediated TRALI has been minimised by the introduction of risk-reduction strategies such as limiting the use of plasma from female donors. In contrast, there are no strategies currently in place to mitigate the development of non-antibody mediated TRALI as the mechanisms remain largely undefined. Previous studies have implicated non-polar lipids such as arachidonic acid and various species of hydroxyeicosatetranoic acid (HETE) in the development of non-antibody mediated TRALI (Silliman et al. Transfusion; 2011; 51: 2549-54), however the contribution of these lipids to the development of an inflammatory response in TRALI is poorly understood.
Resumo:
Nowadays, demand for automated Gas metal arc welding (GMAW) is growing and consequently need for intelligent systems is increased to ensure the accuracy of the procedure. To date, welding pool geometry has been the most used factor in quality assessment of intelligent welding systems. But, it has recently been found that Mahalanobis Distance (MD) not only can be used for this purpose but also is more efficient. In the present paper, Artificial Neural Networks (ANN) has been used for prediction of MD parameter. However, advantages and disadvantages of other methods have been discussed. The Levenberg–Marquardt algorithm was found to be the most effective algorithm for GMAW process. It is known that the number of neurons plays an important role in optimal network design. In this work, using trial and error method, it has been found that 30 is the optimal number of neurons. The model has been investigated with different number of layers in Multilayer Perceptron (MLP) architecture and has been shown that for the aim of this work the optimal result is obtained when using MLP with one layer. Robustness of the system has been evaluated by adding noise into the input data and studying the effect of the noise in prediction capability of the network. The experiments for this study were conducted in an automated GMAW setup that was integrated with data acquisition system and prepared in a laboratory for welding of steel plate with 12 mm in thickness. The accuracy of the network was evaluated by Root Mean Squared (RMS) error between the measured and the estimated values. The low error value (about 0.008) reflects the good accuracy of the model. Also the comparison of the predicted results by ANN and the test data set showed very good agreement that reveals the predictive power of the model. Therefore, the ANN model offered in here for GMA welding process can be used effectively for prediction goals.
Resumo:
Host and donor dendritic cells (DC) stimulate alloreactive donor T lymphocytes, and initiate GVHD. We have shown that polyclonal antibody to the DC surface activation marker human CD83 (anti hCD83), which depletes activated DC, can prevent human DC and T cell induced lethal xenogeneic GVHD in SCID mice without impairing T cell mediated anti-leukaemic and anti-viral (CMV and influenza) immunity (J Exp Med 2009; 206: 387). Therefore, we made and tested a polyclonal anti mouse CD83 (RAM83) antibody in murine HSCT models and developed a human mAb against hCD83 as a potential new therapeutic immunosuppressive agent.
Resumo:
Details the developments to date of an unmanned air vehicle (UAV) based on a standard size 60 model helicopter. The design goal is to have the helicopter achieve stable hover with the aid of an INS and stereo vision. The focus of the paper is on the development of an artificial neural network (ANN) that makes use of only the INS data to generate hover commands, which are used to directly manipulate the flight servos. Current results show that networks incorporating some form of recurrency (state history) offer little advantage over those without. At this stage, the ANN has partially maintained periods of hover even with misaligned sensors.
Resumo:
The aim of this study was to investigate the molecular basis of human IgE-allergen interaction by screening a phage-displayed peptide library with an allergen-specific human IgE-mimicking monoclonal antibody (mAb). A mAb that reacted with major grass pollen allergens was successfully identified and shown to inhibit human IgE-allergen interaction. Biopanning of a phage-displayed random peptide library with this mAb yielded a 12 amino acid long mimotope. A synthetic peptide based on this 12-mer mimotope inhibited mAb and human IgE binding to grass pollen extracts. Our results indicate that such synthetic peptide mimotopes of allergens have potential as novel therapeutic agents. © 2001 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
Primary biliary cirrhosis (PBC) and autoimmune cholangitis (AIC) are serologic expressions of an autoimmune liver disease affecting biliary ductular cells. Previously we screened a phage-displayed random peptide library with polyclonal IgG from 2 Australian patients with PBC and derived peptides that identified a single conformational (discontinuous) epitope in the inner lipoyl domain of the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2), the characteristic autoantigen in PBC. Here we have used phage display to investigate the reactivity of PBC sera from 2 ethnically and geographically distinct populations, Japanese and Australian, and the 2 serologic expressions, PBC and AIC. Random 7-mer and 12-mer peptide libraries were biopanned with IgG from 3 Japanese patients with PBC and 3 with AIC who did not have anti-PDC-E2. The phage clones (phagotopes) obtained were tested by capture enzyme-linked immunosorbent assay (ELISA) for reactivity with affinity-purified anti-PDC-E2, and compared with those obtained from Australian patients with PBC. Peptide sequences of the derived phagotopes and sequences derived by biopanning with irrelevant antisera were aligned to develop a guide tree based on physicochemical similarity. Both Australian and Japanese PBC-derived phagotopes were distributed in branches of the guide tree that contained the peptide sequences MH and FV previously identified as part of an immunodominant conformational epitope of PDC-E2, indicating that epitope selection was not influenced by the racial origin of the PBC sera. Biopanning with either PBC or AIC-derived IgG yielded phagotopes that reacted with anti-PDC-E2 by capture ELISA, further establishing that there is a similar autoimmune targeting in PBC and AIC.
Resumo:
The chemokine receptor CCR5 contains seven transmembrane-spanning domains. It binds chemokines and acts as co-receptor for macrophage (m)-tropic (or R5) strains of HIV-1. Monoclonal antibodies (mAb) to CCR5, 3A9 and 5C7, were used for biopanning a nonapeptide cysteine (C)-constrained phage-displayed random peptide library to ascertain contact residues and define tertiary structures of possible epitopes on CCR5. Reactivity of antibodies with phagotopes was established by enzyme-linked immunosorbent assay (ELISA). mAb 3A9 identified a phagotope C-HASIYDFGS-C (3A9/1), and 5C7 most frequently identified C-PHWLRDLRV-C (5C7/1). Corresponding peptides were synthesized. Phagotopes and synthetic peptides reacted in ELISA with corresponding antibodies and synthetic peptides inhibited antibody binding to the phagotopes. Reactivity by immunofluorescence of 3A9 with CCR5 was strongly inhibited by the corresponding peptide. Both mAb 3A9 and 5C7 reacted similarly with phagotopes and the corresponding peptide selected by the alternative mAb. The sequences of peptide inserts of phagotopes could be aligned as mimotopes of the sequence of CCR5. For phage 3A9/1, the motif SIYD aligned to residues at the N terminus and FG to residues on the first extracellular loop; for 5C7/1, residues at the N terminus, first extracellular loop, and possibly the third extracellular loop could be aligned and so would contribute to the mimotope. The synthetic peptides corresponding to the isolated phagotopes showed a CD4-dependent reactivity with gp120 of a primary, m-tropic HIV-1 isolate. Thus reactivity of antibodies raised to CCR5 against phage-displayed peptides defined mimotopes that reflect binding sites for these antibodies and reveal a part of the gp120 binding sites on CCR5.
Resumo:
Phage display is an advanced technology that can be used to characterize the interactions of antibody with antigen at the molecular level. It provides valuable data when applied to the investigation of IgE interaction with allergens. The aim of this rostrum article is to provide an explanation of the potential of phage display for increasing the understanding of allergen- IgE interaction, the discovery of diagnostic reagents, and the development of novel therapeutics for the treatment of allergic disease. The significance of initial studies that have applied phage display technology in allergy research will be highlighted. Phage display has been used to clone human IgE to timothy grass pollen allergen Phl p 5, to characterize the epitopes for murine and human antibodies to a birch pollen allergen Bet v 1, and to elucidate the epitopes of a murine mAb to the house dust mite allergen Der p 1. The technology has identified peptides that functionally mimic sites of human IgE constant domains and that were used to raise antiserum for blocking binding of IgE to the FcεRI on basophils and subsequent release of histamine. Phage display has also been used to characterize novel peanut and fungal allergens. The method has been used to increase our understanding of the molecular basis of allergen-IgE interactions and to develop clinically relevant reagents with the pharmacologic potential to block the effector phase of allergic reactions. Many advances from these early studies are likely as phage display technology evolves and allergists gain expertise in its research applications.
Resumo:
Antibody screening of phage-displayed random peptide libraries to identify mimotopes of conformational epitopes is promising. However, because interpretations can be difficult, an exemplary system has been used in the present study to investigate whether variation in the peptide sequences of selected phagotopes corresponded with variation in immunoreactivity. The phagotopes, derived using a well-characterized monoclonal antibody, CII-C1, to a known conformational epitope on type II collagen, C1, were tested by direct and inhibition ELISA for reactivity with CII-C1. A multiple sequence alignment algorithm, PILEUP, was used to sort the peptides expressed by the phagotopes into clusters. A model was prepared of the C1 epitope on type II collagen. The 12 selected phagotopes reacted with CII-C1 by both direct ELISA (titres from < 100-11 200) and inhibition ELISA (20-100% inhibition); the reactivity varied according to the peptide sequence and assay format. The differences in reactivity between the phagotopes were mostly in accord with the alignment, by PILEUP, of the peptide sequences. The finding that the phagotopes functionally mimicked the C1 epitope on collagen was validated in that amino acids RRL at the amino terminal of many of the peptides were topographically demonstrable on the model of the C1 epitope. Notably, one phagotope that expressed the widely divergent peptide C-IAPKRHNSA-C also mimicked the C1 epitope, as judged by reactivity in each of the assays used: these included cross-inhibition of CII-C1 reactivity with each of the other phagotopes and inhibition by a synthetic peptide corresponding to that expressed by the most frequently selected phagotope, RRLPFGSQM. Thus, it has been demonstrated that multiple phage-displayed peptides can mimic the same epitope and that observed immunoreactivity of selected phagotopes with the selecting mAb can depend on the primary sequence of the expressed peptide and also on the assay format used.