358 resultados para Artificial Information Models


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Smart State initiative requires both improved education and training, panicularly in technical fields, plus entrepreneurship to commercialise new ideas. In this study, we propose an entrepreneurial intentions model as a guide to examine the educational choices and entrepreneurial intentions of first-year University students, focusing on the effect of role models. A survey of over 1000 first-year University students revealed that the most enterprising students were choosing to study in the disciplines of information technology and business, economics and law, or selecting dualdegree programs that include business. The role models most often identified for their choice of field of study were parents,followed by teachers and peers, with females identifying more role models than males. For entrepreneurship, students' role models were parents andpeers,followed by famous persons and teachers. Males and females identified similar numbers of role models, but males found starting a business more desirable and more feasible, and reponed higher entrepreneurial intention. The implications of these findings for Smart State policy are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Smart State initiative requires both improved education and training, particularly in technical fields, plus entrepreneurship to commercialise new ideas. In this study, we propose an entrepreneurial intentions model as a guide to examine the educational choices and entrepreneurial intentions of first-year University students, focusing on the effect of role models. A survey of over 1000 first -year University students revealed that the most enterprising students were choosing to study in the disciplines of information technology and business, economics and law, or selecting dual degree programs that include business. The role models most often identified for their choice of field of study were parents, followed by teachers and peers, wish females identifying more role models than males. For entrepreneurship, students' role models were parents and peers, followed by famous persons and teachers. Males and females identified similar numbers of role models, but males found starting a business more desirable and more feasible, and reported higher entrepreneurial intention. The implications of these findings for Smart State policy are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With increasingly complex engineering assets and tight economic requirements, asset reliability becomes more crucial in Engineering Asset Management (EAM). Improving the reliability of systems has always been a major aim of EAM. Reliability assessment using degradation data has become a significant approach to evaluate the reliability and safety of critical systems. Degradation data often provide more information than failure time data for assessing reliability and predicting the remnant life of systems. In general, degradation is the reduction in performance, reliability, and life span of assets. Many failure mechanisms can be traced to an underlying degradation process. Degradation phenomenon is a kind of stochastic process; therefore, it could be modelled in several approaches. Degradation modelling techniques have generated a great amount of research in reliability field. While degradation models play a significant role in reliability analysis, there are few review papers on that. This paper presents a review of the existing literature on commonly used degradation models in reliability analysis. The current research and developments in degradation models are reviewed and summarised in this paper. This study synthesises these models and classifies them in certain groups. Additionally, it attempts to identify the merits, limitations, and applications of each model. It provides potential applications of these degradation models in asset health and reliability prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A configurable process model provides a consolidated view of a family of business processes. It promotes the reuse of proven practices by providing analysts with a generic modelling artifact from which to derive individual process models. Unfortunately, the scope of existing notations for configurable process modelling is restricted, thus hindering their applicability. Specifically, these notations focus on capturing tasks and control-flow dependencies, neglecting equally important ingredients of business processes such as data and resources. This research fills this gap by proposing a configurable process modelling notation incorporating features for capturing resources, data and physical objects involved in the performance of tasks. The proposal has been implemented in a toolset that assists analysts during the configuration phase and guarantees the correctness of the resulting process models. The approach has been validated by means of a case study from the film industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study will cross-fertilise Information Systems (IS) and Services Marketing ideas through reconceptualising the information system as a service (ISaaS). The study addresses known limitations of arguably the two most significant dependent variables in these disciplines - Information System Success or IS-Impact, and Service Quality. Planned efforts to synthesise analogous conceptions across these disciplines, are expected to force a deeper theoretical understanding of the broad notions of success, quality, value and satisfaction and their interrelations. The aims of this research are to: (1) yield a conceptually superior and more extensively validated IS success measurement model, and (2) develop and operationalise a more rigorously validated Service Quality measurement model, while extending the ‘service’ notion to ‘operational computer-based information systems in organisations’. In the development of the new models the study will address contemporary validation issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evidence-based Practice (EBP) has recently emerged as a topic of discussion amongst professionals within the library and information services (LIS) industry. Simply stated, EBP is the process of using formal research skills and methods to assist in decision making and establishing best practice. The emerging interest in EBP within the library context serves to remind the library profession that research skills and methods can help ensure that the library industry remains current and relevant in changing times. The LIS sector faces ongoing challenges in terms of the expectation that financial and human resources will be managed efficiently, particularly if library budgets are reduced and accountability to the principal stakeholders is increased. Library managers are charged with the responsibility to deliver relevant and cost effective services, in an environment characterised by rapidly changing models of information provision, information access and user behaviours. Consequently they are called upon not only to justify the services they provide, or plan to introduce, but also to measure the effectiveness of these services and to evaluate the impact on the communities they serve. The imperative for innovation in and enhancements to library practice is accompanied by the need for a strong understanding of the processes of review, measurement, assessment and evaluation. In 2001 the Centre for Information Research was commissioned by the Chartered Institute of Library and Information Professionals (CILIP) in the UK to conduct an examination into the research landscape for library and information science. The examination concluded that research is “important for the LIS [library and information science] domain in a number of ways” (McNicol & Nankivell, 2001, p.77). At the professional level, research can inform practice, assist in the future planning of the profession, raise the profile of the discipline, and indeed the reputation and standing of the library and information service itself. At the personal level, research can “broaden horizons and offer individuals development opportunities” (McNicol & Nankivell, 2001, p.77). The study recommended that “research should be promoted as a valuable professional activity for practitioners to engage in” (McNicol & Nankivell, 2001, p.82). This chapter will consider the role of EBP within the library profession. A brief review of key literature in the area is provided. The review considers issues of definition and terminology, highlights the importance of research in professional practice and outlines the research approaches that underpin EBP. The chapter concludes with a consideration of the specific application of EBP within the dynamic and evolving field of information literacy (IL).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this third Quantum Interaction (QI) meeting it is time to examine our failures. One of the weakest elements of QI as a field, arises in its continuing lack of models displaying proper evolutionary dynamics. This paper presents an overview of the modern generalised approach to the derivation of time evolution equations in physics, showing how the notion of symmetry is essential to the extraction of operators in quantum theory. The form that symmetry might take in non-physical models is explored, with a number of viable avenues identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aims of this chapter are twofold. First, we show how experiments related to nonlinear dynamical systems theory can bring about insights on the interconnectedness of different information sources for action. These include the amount of information as emphasised in conventional models of cognition and action in sport and the nature of perceptual information typically emphasised in the ecological approach. The second aim was to show how, through examining the interconnectedness of these information sources, one can study the emergence of novel tactical solutions in sport; and design experiments where tactical/decisional creativity can be observed. Within this approach it is proposed that perceptual and affective information can be manipulated during practice so that the athlete's cognitive and action systems can be transposed to a meta-stable dynamical performance region where the creation of novel action information may reside.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the following problem: given two or more business process models, create a process model that is the union of the process models given as input. In other words, the behavior of the produced process model should encompass that of the input models. The paper describes an algorithm that produces a single configurable process model from an arbitrary collection of process models. The algorithm works by extracting the common parts of the input process models, creating a single copy of them, and appending the differences as branches of configurable connectors. This way, the merged process model is kept as small as possible, while still capturing all the behavior of the input models. Moreover, analysts are able to trace back from which original model(s) does a given element in the merged model come from. The algorithm has been prototyped and tested against process models taken from several application domains.