123 resultados para Architecture of Iran
Resumo:
Background and aims. Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by progressive inflammation and fibrosis of the bile ducts eventually leading to biliary cirrhosis. Recent genetic studies in PSC have identified associations at 2q13, 2q35, 3p21, 4q27, 13q31 and suggestive association at 10p15. The aim of this study was to further characterize and refine the genetic architecture of PSC. Methods. We analyzed previously reported associated SNPs at four of these non-HLA loci and 59 SNPs tagging the IL-2/IL-21 (4q27) and IL2RA (10p15) loci in 992 UK PSC cases and 5162 healthy UK controls. Results. The most associated SNPs identified were rs3197999 (3p21 (MST1), p = 1.9 × 10 -6, OR A vs G = 1.28, 95% CI (1.16-1.42)); rs4147359 (10p15 (IL2RA), p = 2.6 × 10 -4, OR A vs G = 1.20, 95% CI (1.09-1.33)) and rs12511287 (4q27 (IL-2/IL-21), p = 3.0 × 10 -4, OR A vs T = 1.21, 95% CI (1.09-1.35)). In addition, we performed a meta-analysis for selected SNPs using published summary statistics from recent studies. We observed genome-wide significance for rs3197999 (3p21 (MST1), P combined = 3.8 × 10 -12) and rs4147359 (10p15 (IL2RA), P combined = 1.5 × 10 -8). Conclusion. We have for the first time confirmed the association of PSC with genetic variants at 10p15 (IL2RA) locus at genome-wide significance and replicated the associations at MST1 and IL-2/IL-21 loci in a large homogeneous UK population. These results strongly implicate the role of IL-2/IL2RA pathway in PSC and provide further confirmation of MST1 association. © Informa Healthcare.
Resumo:
This project has investigated how the architecture of the blood vessels supplying nutrients to skeletal muscles is affected by muscle contusion injuries, and how it changes during healing with or without initial treatment of the injury by icing. In order to do this, we used contrast agents to visualise blood vessels in 3D with micro-computed tomography imaging. This research significantly contributes to the fields of orthopaedics, traumatology and sports medicine, as it improves our understanding of muscle contusion injuries. Furthermore, the methods developed in this thesis may help to improve the diagnosis and monitoring of these injuries.
Resumo:
Endometriosis is primarily characterized by the presence of tissue resembling endometrium outside the uterine cavity and is usually diagnosed by laparoscopy. The most commonly used classification of disease, the revised American Fertility Society (rAFS) system to grade endometriosis into different stages based on disease severity (I to IV), has been questioned as it does not correlate well with underlying symptoms, posing issues in diagnosis and choice of treatment. Using two independent European genome-wide association (GWA) datasets and top-level classification of the endometriosis cases based on rAFS [minimal or mild (Stage A) and moderate-to-severe (Stage B) disease], we previously showed that Stage B endometriosis has greater contribution of common genetic variation to its aetiology than Stage A disease. Herein, we extend our previous analysis to four endometriosis stages [minimal (Stage I), mild (Stage II), moderate (Stage III) and severe (Stage IV) disease] based on the rAFS classification system and compared the genetic burden across stages. Our results indicate that genetic burden increases from minimal to severe endometriosis. For the minimal disease, genetic factors may contribute to a lesser extent than other disease categories. Mild and moderate endometriosis appeared genetically similar, making it difficult to tease them apart. Consistent with our previous reports, moderate and severe endometriosis showed greater genetic burden than minimal or mild disease. Overall, our results provide new insights into the genetic architecture of endometriosis and further investigation in larger samples may help to understand better the aetiology of varying degrees of endometriosis, enabling improved diagnostic and treatment modalities.
Resumo:
Common diseases such as endometriosis (ED), Alzheimer's disease (AD) and multiple sclerosis (MS) account for a significant proportion of the health care burden in many countries. Genome-wide association studies (GWASs) for these diseases have identified a number of individual genetic variants contributing to the risk of those diseases. However, the effect size for most variants is small and collectively the known variants explain only a small proportion of the estimated heritability. We used a linear mixed model to fit all single nucleotide polymorphisms (SNPs) simultaneously, and estimated genetic variances on the liability scale using SNPs from GWASs in unrelated individuals for these three diseases. For each of the three diseases, case and control samples were not all genotyped in the same laboratory. We demonstrate that a careful analysis can obtain robust estimates, but also that insufficient quality control (QC) of SNPs can lead to spurious results and that too stringent QC is likely to remove real genetic signals. Our estimates show that common SNPs on commercially available genotyping chips capture significant variation contributing to liability for all three diseases. The estimated proportion of total variation tagged by all SNPs was 0.26 (SE 0.04) for ED, 0.24 (SE 0.03) for AD and 0.30 (SE 0.03) for MS. Further, we partitioned the genetic variance explained into five categories by a minor allele frequency (MAF), by chromosomes and gene annotation. We provide strong evidence that a substantial proportion of variation in liability is explained by common SNPs, and thereby give insights into the genetic architecture of the diseases.
Resumo:
Major depressive disorder (MDD) is a common complex disorder with a partly genetic etiology. We conducted a genome-wide association study of the MDD2000+ sample (2431 cases, 3673 screened controls and >1 M imputed single-nucleotide polymorphisms (SNPs)). No SNPs achieved genome-wide significance either in the MDD2000+ study, or in meta-analysis with two other studies totaling 5763 cases and 6901 controls. These results imply that common variants of intermediate or large effect do not have main effects in the genetic architecture of MDD. Suggestive but notable results were: (a) gene-based tests suggesting roles for adenylate cyclase 3 (ADCY3, 2p23.3) and galanin (GAL, 11q13.3); published functional evidence relates both of these to MDD and serotonergic signaling; (b) support for the bipolar disorder risk variant SNP rs1006737 in CACNA1C (P=0.020, odds ratio=1.10), and; (c) lack of support for rs2251219, a SNP identified in a meta-analysis of affective disorder studies (P=0.51). We estimate that sample sizes 1.8- to 2.4-fold greater are needed for association studies of MDD compared with those for schizophrenia to detect variants that explain the same proportion of total variance in liability. Larger study cohorts characterized for genetic and environmental risk factors accumulated prospectively are likely to be needed to dissect more fully the etiology of MDD.
Resumo:
Variation in personality traits is 30-60% attributed to genetic influences. Attempts to unravel these genetic influences at the molecular level have, so far, been inconclusive. We performed the first genome-wide association study of Cloninger's temperament scales in a sample of 5117 individuals, in order to identify common genetic variants underlying variation in personality. Participants' scores on Harm Avoidance, Novelty Seeking, Reward Dependence, and Persistence were tested for association with 1,252,387 genetic markers. We also performed gene-based association tests and biological pathway analyses. No genetic variants that significantly contribute to personality variation were identified, while our sample provides over 90% power to detect variants that explain only 1% of the trait variance. This indicates that individual common genetic variants of this size or greater do not contribute to personality trait variation, which has important implications regarding the genetic architecture of personality and the evolutionary mechanisms by which heritable variation is maintained.
Resumo:
OBJECTIVES To investigate: - (1) whether shared genetic factors influence migraine and anxious depression; - (2) whether the genetic architecture of migraine depends on anxious depression; - (3) whether the association between migraine and anxious depression is causal. BACKGROUND Migraine and anxious depression frequently occur together, but little is known about the mechanisms causing this association. METHODS A twin study was conducted to model the genetic architecture of migraine and anxious depression and the covariance between them. Anxious depression was also added to the model as a moderator variable to examine whether anxious depression affects the genetic architecture of migraine. Causal models were explored with the co-twin control method. RESULTS Modest but significant phenotypic (rP=0.28), genetic (rG=0.30), and nonshared environmental (rE=0.26) correlations were found between the 2 traits. Interestingly, the heritability of migraine depended on the level of anxious depression: the higher the anxious depression score, the lower the relative contribution of genetic factors to the individual differences in migraine susceptibility. The observed risk patterns in discordant twins are most consistent with a bidirectional causal relationship. CONCLUSIONS These findings confirm the genetic association between migraine and anxious depression and are consistent with a syndromic association between the 2 traits. This highlights the importance of taking comorbidity into account in genetic studies of migraine, especially in the context of selection for large-scale genotyping efforts. Genetic studies may be most effective when migraine with and without comorbid anxious depression are treated as separate phenotypes.
Resumo:
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
Resumo:
The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF = 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
Resumo:
The Open and Trusted Health Information Systems (OTHIS) Research Group has formed in response to the health sector’s privacy and security requirements for contemporary Health Information Systems (HIS). Due to recent research developments in trusted computing concepts, it is now both timely and desirable to move electronic HIS towards privacy-aware and security-aware applications. We introduce the OTHIS architecture in this paper. This scheme proposes a feasible and sustainable solution to meeting real-world application security demands using commercial off-the-shelf systems and commodity hardware and software products.
Resumo:
Information and Communications Technologies globally are moving towards Service Oriented Architectures and Web Services. The healthcare environment is rapidly moving to the use of Service Oriented Architecture/Web Services systems interconnected via this global open Internet. Such moves present major challenges where these structures are not based on highly trusted operating systems. This paper argues the need of a radical re-think of access control in the contemporary healthcare environment in light of modern information system structures, legislative and regulatory requirements, and security operation demands in Health Information Systems. This paper proposes the Open and Trusted Health Information Systems (OTHIS), a viable solution including override capability to the provision of appropriate levels of secure access control for the protection of sensitive health data.
Resumo:
The assumption that the size, anonymity and weakened social controls of urban living generates social conflict, disorganization and higher rates of crime and violence has been an article of faith in much criminological and social scientific inquiry since the nineteenth century (i.e. Tönnies 1897; Shaw and McKay 1931; Levin and Lindesmith 1937; Nisbet 1970; Baldwin and Bottoms 1976; Felson 1994). The paper challenges this article of criminological faith and questions the utility of urban centric criminological theorizing about the causes of violence in rural settings. Drawing on descriptive data that show that rural men present a relatively high risk of inflicting harm upon themselves and others, this paper explores the larger socio-criminological question as to why this might be. The question is examined in relation to the processes of community formation that shape the everyday architecture of rural life. We explore how that architecture has historically valorized violent expressions of masculinity grounded in a relationship between men's bodies and the rural landscapes they inhabit - but how the legitimacy of these violent expressions are being challenged by sweeping social, economic and political changes. One psycho-social response to these sweeping social changes to rural life, we conclude, is a resort to violence as a largely strategic practice deployed to recreate an imagined rural gender order.
Resumo:
We present algorithms, systems, and experimental results for underwater data muling. In data muling a mobile agent interacts with static agents to upload, download, or transport data to a different physical location. We consider a system comprising an Autonomous Underwater Vehicle (AUV) and many static Underwater Sensor Nodes (USN) networked together optically and acoustically. The AUV can locate the static nodes using vision and hover above the static nodes for data upload. We describe the hardware and software architecture of this underwater system, as well as experimental data. © 2006 IEEE.
Resumo:
In this paper we present a novel platform for underwater sensor networks to be used for long-term monitoring of coral reefs and �sheries. The sensor network consists of static and mobile underwater sensor nodes. The nodes communicate point-to-point using a novel high-speed optical communication system integrated into the TinyOS stack, and they broadcast using an acoustic protocol integrated in the TinyOS stack. The nodes have a variety of sensing capabilities, including cameras, water temperature, and pressure. The mobile nodes can locate and hover above the static nodes for data muling, and they can perform network maintenance functions such as deployment, relocation, and recovery. In this paper we describe the hardware and software architecture of this underwater sensor network. We then describe the optical and acoustic networking protocols and present experimental networking and data collected in a pool, in rivers, and in the ocean. Finally, we describe our experiments with mobility for data muling in this network.
Resumo:
In this paper we describe a low-cost flight control system for a small (60 class) helicopter which is part of a larger project to develop an autonomous flying vehicle. Our approach differs from that of others in not using an expensive inertial/GPS sensing system. The primary sensors for vehicle stabilization are a low-cost inertial sensor and a pair of CMOS cameras. We describe the architecture of our flight control system, the inertial and visual sensing subsystems and present some flight control results.