385 resultados para Adam Phillips
Resumo:
Study Design: Biomechanical testing of vertebral body screw pullout resistance with relevance to top screw pullout in endoscopic anterior scoliosis constructs. Objectives: To analyse the effect of screw positioning and angulation on pullout resistance of vertebral body screws, where the pullout takes place along a curved path as occurs in anterior scoliosis constructs. Summary of Background Data: Top screw pullout is a significant clinical problem in endoscopic anterior scoliosis surgery, with rates of up to 18% reported in the literature. Methods: A custom designed biomechanical test rig was used to perform pullout tests of Medtronic anterior vertebral screws where the pullout occurred along an arc of known radius. Using synthetic bone blocks, a range of pullout radii and screw angulations were tested, in order to determine an ‘optimal’ configuration. The optimal configuration was then compared with standard screw positioning using a series of tests on ovine vertebrae (n=29). Results: Screw angulation has a small but significant effect on pullout resistance, with maximum strength being achieved at 10 degree cephalad angulation. Combining 10 degree cephalad angulation with maximal spacing between the top two screws (maximum pullout radius) increased the pullout resistance by 88% compared to ‘standard’ screw positioning (screws inserted perpendicular to rod at mid-body height). Conclusions: The positioning of the top screw in anterior scoliosis constructs can significantly alter its pullout resistance.
Resumo:
The relationship between deformity correction and self-reported patient satisfaction after thoracoscopic anterior scoliosis surgery is unknown. Scoliosis Research Society questionnaire scores, radiographic outcomes, and rib hump correction were prospectively assessed for a group of 100 patients pre-operatively and at two years after surgery. Patients with lower post-op major Cobb angles report significantly higher SRS scores than patients with higher post-op Cobb angles.
Resumo:
Introduction. Ideally after selective thoracic fusion for Lenke Class IC (i.e. major thoracic / secondary lumbar) curves, the lumbar spine will spontaneously accommodate to the corrected position of the thoracic curve, thereby achieving a balanced spine, avoiding the need for fusion of lumbar spinal segments1. The purpose of this study was to evaluate the behaviour of the lumbar curve in Lenke IC class adolescent idiopathic scoliosis (AIS) following video-assisted thoracoscopic spinal fusion and instrumentation (VATS) of the major thoracic curve. Methods. A retrospective review of 22 consecutive patients with AIS who underwent VATS by a single surgeon was conducted. The results were compared to published literature examining the behaviour of the secondary lumbar curve where other surgical approaches were employed. Results. Twenty-two patients (all female) with AIS underwent VATS. All major thoracic curves were right convex. The average age at surgery was 14 years (range 10 to 22 years). On average 6.7 levels (6 to 8) were instrumented. The mean follow-up was 25.1 months (6 to 36). The pre-operative major thoracic Cobb angle mean was 53.8° (40° to 75°). The pre-operative secondary lumbar Cobb angle mean was 43.9° (34° to 55°). On bending radiographs, the secondary curve corrected to 11.3° (0° to 35°). The rib hump mean measurement was 15.0° (7° to 21°). At latest follow-up the major thoracic Cobb angle measured on average 27.2° (20° to 41°) (p<0.001 – univariate ANOVA) and the mean secondary lumbar curve was 27.3° (15° to 42°) (p<0.001). This represented an uninstrumented secondary curve correction factor of 37.8%. The mean rib hump measured was 6.5° (2° to 15°) (p<0.001). The results above were comparable to published series when open surgery was performed. Discussion. VATS is an effective method of correcting major thoracic curves with secondary lumbar curves. The behaviour of the secondary lumbar curve is consistent with published series when open surgery, both anterior and posterior, is performed.
Resumo:
One of the primary treatment goals of adolescent idiopathic scoliosis (AIS) surgery is to achieve maximum coronal plane correction while maintaining coronal balance. However maintaining or restoring sagittal plane spinal curvature has become increasingly important in maintaining the long-term health of the spine. Patients with AIS are characterised by pre-operative thoracic hypokyphosis, and it is generally agreed that operative treatment of thoracic idiopathic scoliosis should aim to restore thoracic kyphosis to normal values while maintaining lumbar lordosis and good overall sagittal balance. The aim of this study was to evaluate CT sagittal plane parameters, with particular emphasis on thoracolumbar junctional alignment, in patients with AIS who underwent Video Assisted Thoracoscopic Spinal Fusion and Instrumentation (VATS). This study concluded that video-assisted thoracoscopic spinal fusion and instrumentation reliably increases thoracic kyphosis while preserving junctional alignment and lumbar lordosis in thoracic AIS.
Resumo:
Severe spinal deformity in young children is a formidable challenge for optimal treatment. Standard interventions for adolescents, such as spinal deformity correction and fusion, may not be appropriate for young patients with considerable growth remaining. Alternative surgical options that provide deformity correction and protect the growth remaining in the spine are needed to treat this group of patients 1, 2. One such method is the use of shape memory alloy staples. We report our experience to date using video-assisted thoracoscopic insertion of shape memory alloy staples. A retrospective review was conducted of 13 patients with scoliosis, aged 7 to 13 years, who underwent video-assisted thoracoscopic insertion of shape memory staples. In our experience, video-assisted thoracoscopic insertion of shape memory alloy staples is a safe procedure with no complications noted. It is a reliable method of providing curve stability, however the follow up results to date indicate that the effectiveness of the procedure is greater in younger patients.
Resumo:
Magnetic Resonance Imaging (MRI) offers a valuable research tool for the assessment of 3D spinal deformity in AIS, however the horizontal patient position imposed by conventional scanners removes the axial compressive loading on the spine which is an important determinant of deformity shape and magnitude in standing scoliosis patients. The objective of this study was to design, construct and test an MRI compatible compression device for research into the effect of axial loading on spinal deformity using supine MRI scans. The compression device was designed and constructed, consisting of a vest worn by the patient, which was attached via straps to a pneumatically actuated footplate. An applied load of 0.5 x bodyweight was remotely controlled by a unit in the scanner operator’s console. The entire device was constructed using non-metallic components for MRI compatibility. The device was evaluated by performing unloaded and loaded supine MRI scans on a series of 10 AIS patients. The study concluded that an MRI compatible compression device had been successfully designed and constructed, providing a research tool for studies into the effect of axial loading on 3D spinal deformity in scoliosis. The 3D axially loaded MR imaging capability developed in this study will allow future research investigations of the effect of axial loading on spinal rotation, and for imaging the response of scoliotic spinal tissues to axial loading.
Resumo:
Adolescent Idiopathic Scoliosis (AIS) has been associated with reduced pulmonary function believed to be due to a restriction of lung volume by the deformed thoracic cavity. A recent study by our group examined the changes in lung volume pre and post anterior thoracoscopic scoliosis correction using pulmonary function testing (1), however the anatomical changes in ribcage shape and left/right lung volume after thoracoscopic surgery which govern overall respiratory capacity are unknown. The aim of this study was to use 3D rendering from CT scan data to compare lung and ribcage anatomical changes from pre to two years post thoracoscopic anterior scoliosis correction. The study concluded that 3D volumetric reconstruction from CT scans is a powerful means of evaluating changes in pulmonary and thoracic anatomy following surgical AIS correction. Most likely, lung volume changes following thoracoscopic scoliosis correction are multifactorial and affected by changes in height (due to residual growth), ribcage shape, diaphragm positioning, Cobb angle correction in the thoracic spine. Further analysis of the 3D reconstructions will be performed to assess how each of these factors affect lung volume in this patient cohort.
Resumo:
This collaborative event was organised to coincide with International celebrations by the International Council of Societies of Industrial Design (ICSID). The panel discussion involved industrial designers from a variety of backgrounds including academics, theorists and practitioners. Each panel member was given time to voice their opinion surrounding the theme of WIDD2010 "Industrial Design: Humane Solutions for a Resilient World". The discussion was then extended to the audience through active question and answer time. The panel included: * Professor Vesna Popovic FDIA - Queensland University of Technology * Adam Doyle, Studio Manager - Infinity Design Development * Scott Cox MDIA, Creative Director - Formwerx * Alexander Lotersztain, Director - Derlot * Philip Whiting FDIA, Design Convenor - QCA * Professor Tony Fry, Director Team D/E/S & QCA After this, the documentary by Gary Hewtsit "Objectified" was then screened (75 min).
Resumo:
In 1859, Queensland was separated from New South Wales as an independent colony. At this time the new Governor conspired to ensure the citizens did not inherit the old colonies system of full male suffrage. This was not returned until the Elections Act of 1872. However, the extended franchise was not a result of either democratic values or other ideological intentions. This article will analyse parliamentary debates to show that the revision to full suffrage was a result of administrative expediency driven by an inability to prevent abuse of the limited franchise.
Resumo:
In this study, the influence of pH on interfacial energy distributed over the phospholipids-bilayer surface model and the effect of hydrophobicity on coefficient of friction (f) were investigated by using microelectrophoresis. An important clinical implication of deficiency in hydrophobicity is the loss of phospholipids that is readily observed in osteoarthritis joints. This paper establishes the influence of pH on interfacial energy upon an increase f, which might be associated with a decrease of hydrophobicity of the articular surface.
Resumo:
Over the years, approaches to obesity prevention and treatment have gone from focusing on genetic and other biological factors to exploring a diversity of diets and individual behavior modification interventions anchored primarily in the power of the mind, to the recent shift focusing on societal interventions to design ";temptation-proof"; physical, social, and economic environments. In spite of repeated calls to action, including those of the World Health Organization (WHO), the pandemic continues to progress. WHO recently projected that if the current lifestyle trend in young and adult populations around the world persist, by 2012 in countries like the USA, health care costs may amount to as much as 17.7% of the GDP. Most importantly, in large part due to the problems of obesity, those children may be the first generation ever to have a shorter life expectancy than that of their parents. This work presents the most current research and proposals for addressing the pandemic. Past studies have focused primarly on either genetic or behavioral causes for obesity, however today's research indicates that a strongly integrated program is the best prospect for success in overcoming obesity. Furthermore, focus on the role of society in establishing an affordable, accessible and sustainable program for implementing these lifestyle changes is vital, particularly for those in economically challenged situations, who are ultimately at the highest risk for obesity. Using studies from both neuroscience and behavioral science to present a comprehensive overview of the challenges and possible solutions, The brain-to-society approach to obesity prevention focuses on what is needed in order to sustain a healthy, pleasurable and affordable lifestyle.
Resumo:
Osteoporotic spinal fractures are a major concern in ageing Western societies. This study develops a multi-scale finite element (FE) model of the osteoporotic lumbar vertebral body to study the mechanics of vertebral compression fracture at both the apparent (whole vertebral body) and micro-structural (internal trabecular bone core)levels. Model predictions were verified against experimental data, and found to provide a reasonably good representation of the mechanics of the osteoporotic vertebral body. This novel modelling methodology will allow detailed investigation of how trabecular bone loss in osteoporosis affects vertebral stiffness and strength in the lumbar spine.
Resumo:
Nanoindentation is a useful technique for probing the mechanical properties of bone, and finite element (FE) modeling of the indentation allows inverse determination of elasto-plastic constitutive properties. However, FE simulations to date have assumed frictionless contact between indenter and bone. The aim of this study was to explore the effect of friction in simulations of bone nanoindentation. Two dimensional axisymmetric FE simulations were performed using a spheroconical indenter of tip radius 0.6m and angle 90°. The coefficient of friction between indenter and bone was varied between 0.0 (frictionless) and 0.3. Isotropic linear elasticity was used in all simulations, with bone elastic modulus E=13.56GPa and Poisson’s ratio =0.3. Plasticity was incorporated using both Drucker-Prager and von Mises yield surfaces. Friction had a modest effect on the predicted force-indentation curve for both von Mises and Drucker-Prager plasticity, reducing maximum indenter displacement by 10% and 20% respectively as friction coefficient was increased from zero to 0.3 (at a maximum indenter force of 5mN). However, friction has a much greater effect on predicted pile-up after indentation, reducing predicted pile-up from 0.27m to 0.11m with a von Mises model, and from 0.09m to 0.02m with Drucker-Prager plasticity. We conclude that it is important to include friction in nanoindentation simulations of bone.
Resumo:
Magnetic Resonance Imaging (MRI) offers a valuable research tool for the assessment of 3D spinal deformity in AIS, however the horizontal patient position imposed by conventional scanners removes the axial compressive loading on the spine. The objective of this study was to design, construct and test an MRI compatible compression device for research into the effect of axial loading on spinal deformity using supine MRI scans. The device was evaluated by performing unloaded and loaded supine MRI scans on a series of 10 AIS patients. The patient group had a mean initial (unloaded) major Cobb angle of 43±7º, which increased to 50±9º on application of the compressive load. The 7° increase in mean Cobb angle is consistent with that reported by a previous study comparing standing versus supine posture in scoliosis patients (Torell et al, 1985. Spine 10:425-7).
Resumo:
At the Mater Children’s Hospital, approximately 80% of patients presenting with Adolescent Idiopathic Scoliosis requiring corrective surgery receive a fulcrum bending radiograph. The fulcrum bending radiograph provides a measurement of spine flexibility and a better indication of achievable surgical correction than lateral-bending radiographs (Cheung and Luk, 1997; Hay et al 2008). The magnitude and distribution of the corrective force exerted by the bolster on the patient’s body is unknown. The objective of this pilot study was to measure, for the first time, the forces transmitted to the patient’s ribs through the bolster during the fulcrum bending radiograph.