344 resultados para Activation Order
Resumo:
In this paper, we consider the variable-order Galilei advection diffusion equation with a nonlinear source term. A numerical scheme with first order temporal accuracy and second order spatial accuracy is developed to simulate the equation. The stability and convergence of the numerical scheme are analyzed. Besides, another numerical scheme for improving temporal accuracy is also developed. Finally, some numerical examples are given and the results demonstrate the effectiveness of theoretical analysis. Keywords: The variable-order Galilei invariant advection diffusion equation with a nonlinear source term; The variable-order Riemann–Liouville fractional partial derivative; Stability; Convergence; Numerical scheme improving temporal accuracy
Resumo:
The Electrocardiogram (ECG) is an important bio-signal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. The HRV signal can be used as a base signal to observe the heart's functioning. These signals are non-linear and non-stationary in nature. So, higher order spectral (HOS) analysis, which is more suitable for non-linear systems and is robust to noise, was used. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, we have extracted seven features from the heart rate signals using HOS and fed them to a support vector machine (SVM) for classification. Our performance evaluation protocol uses 330 subjects consisting of five different kinds of cardiac disease conditions. We demonstrate a sensitivity of 90% for the classifier with a specificity of 87.93%. Our system is ready to run on larger data sets.
Resumo:
Given global demand for new infrastructure, governments face substantial challenges in funding new infrastructure and simultaneously delivering Value for Money (VfM). The paper begins with an update on a key development in a new early/first-order procurement decision making model that deploys production cost/benefit theory and theories concerning transaction costs from the New Institutional Economics, in order to identify a procurement mode that is likely to deliver the best ratio of production costs and transaction costs to production benefits, and therefore deliver superior VfM relative to alternative procurement modes. In doing so, the new procurement model is also able to address the uncertainty concerning the relative merits of Public-Private Partnerships (PPP) and non-PPP procurement approaches. The main aim of the paper is to develop competition as a dependent variable/proxy for VfM and a hypothesis (overarching proposition), as well as developing a research method to test the new procurement model. Competition reflects both production costs and benefits (absolute level of competition) and transaction costs (level of realised competition) and is a key proxy for VfM. Using competition as a proxy for VfM, the overarching proposition is given as: When the actual procurement mode matches the predicted (theoretical) procurement mode (informed by the new procurement model), then actual competition is expected to match potential competition (based on actual capacity). To collect data to test this proposition, the research method that is developed in this paper combines a survey and case study approach. More specifically, data collection instruments for the surveys to collect data on actual procurement, actual competition and potential competition are outlined. Finally, plans for analysing this survey data are briefly mentioned, along with noting the planned use of analytical pattern matching in deploying the new procurement model and in order to develop the predicted (theoretical) procurement mode.
Resumo:
We seek numerical methods for second‐order stochastic differential equations that reproduce the stationary density accurately for all values of damping. A complete analysis is possible for scalar linear second‐order equations (damped harmonic oscillators with additive noise), where the statistics are Gaussian and can be calculated exactly in the continuous‐time and discrete‐time cases. A matrix equation is given for the stationary variances and correlation for methods using one Gaussian random variable per timestep. The only Runge–Kutta method with a nonsingular tableau matrix that gives the exact steady state density for all values of damping is the implicit midpoint rule. Numerical experiments, comparing the implicit midpoint rule with Heun and leapfrog methods on nonlinear equations with additive or multiplicative noise, produce behavior similar to the linear case.
Resumo:
The gonadotropin hypothesis proposes that elevated serum gonadotropin levels may increase the risk of epithelial ovarian cancer (EOC). We have studied the effect of treating EOC cell lines (OV207 and OVCAR-3) with FSH or LH. Both gonadotropins activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and increased cell migration that was inhibited by the MAPK 1 inhibitor PD98059. Both extra- and intracellular calcium ion signalling were implicated in gonadotropin-induced ERK1/2 activation as treatment with either the calcium chelator EGTA or an inhibitor of intracellular calcium release, dantrolene, inhibited gonadotropin-induced ERK1/2 activation. Verapamil was also inhibitory, indicating that gonadotropins activate calcium influx via L-type voltage-dependent calcium channels. The cAMP/protein kinase A (PKA) pathway was not involved in the mediation of gonadotropin action in these cells as gonadotropins did not increase intracellular cAMP formation and inhibition of PKA did not affect gonadotropin-induced phosphorylation of ERK1/2. Activation of ERK1/2 was inhibited by the protein kinase C (PKC) inhibitor GF 109203X as well as by the PKCδ inhibitor rottlerin, and downregulation of PKCδ was inhibited by small interfering RNA (siRNA), highlighting the importance of PKCδ in the gonadotropin signalling cascade. Furthermore, in addition to inhibition by PD98059, gonadotropin-induced ovarian cancer cell migration was also inhibited by verapamil, GF 109203X and rottlerin. Similarly, gonadotropin-induced proliferation was inhibited by PD98059, verapamil, GF 109203X and PKCδ siRNA. Taken together, these results demonstrate that gonadotropins induce both ovarian cancer cell migration and proliferation by activation of ERK1/2 signalling in a calcium- and PKCδ-dependent manner.
Resumo:
We report on the use of the hydrogen bond accepting properties of neutral nitrone moieties to prepare benzylic-amide-macrocycle-containing [2]rotaxanes in yields as high as 70 %. X-Ray crystallography shows the presence of up to four intercomponent hydrogen bonds between the amide groups of the macrocycle and the two nitrone groups of the thread. Dynamic 1H NMR studies of the rates of macrocycle pirouetting in nonpolar solutions indicate that amide-nitrone hydrogen bonds are particularly strong, ~1.3 and ~0.2 kcal mol-1 stronger than similar amide-ester and amide-amide interactions, respectively. In addition to polarizing the N-O bond through hydrogen bonding, the rotaxane structure affects the chemistry of the nitrone groups in two significant ways: The intercomponent hydrogen bonding activates the nitrone groups to electrochemical reduction, a one electron reduction of the rotaxane being stablized by a remarkable 400 mV (8.1 kcal mol-1) with respect to the same process in the thread; encapsulation, however, protects the same functional groups from chemical reduction with an external reagent (and slows down electron transfer to and from the electroactive groups in cyclicvoltammetry experiments). Mechanical interlocking with a hydrogen bonding molecular sheath thus provides a route to an encapsulated polarized functional group and radical anions of significant kinetic and thermodynamic stability.
Resumo:
Epilepsy is characterized by the spontaneous and seemingly unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic system that detects seizure onsets would allow patients or the people near them to take appropriate precautions, and could provide more insight into this phenomenon. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, we made a comparative study of the performance of Gaussian mixture model (GMM) and Support Vector Machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Results show that the selected HOS based features achieve 93.11% classification accuracy compared to 88.78% with features derived from the power spectrum for a GMM classifier. The SVM classifier achieves an improvement from 86.89% with features based on the power spectrum to 92.56% with features based on the bispectrum.