92 resultados para A. magnesium


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comprehensive study was undertaken involving chemical (inorganic and organic) and bioanalytical (a suite of 14 in vitro bioassays) assessments of coal seam gas (coal bed methane) associated water (CSGW) in Queensland, Australia. CSGW is a by-product of the gas extraction process and is generally considered as water of poor quality. This was done to better understand what is known about the potential biological and environmental effects associated with the organic constituents of CSGW in Australia. In Queensland, large amounts of associated water must be withdrawn from coal seams to allow extraction of the gas. CSGW is disposed of via release to surface water, reinjected to groundwater or reused for irrigation of crops or pasture, supplied for power station cooling and or reinjected specifically to augment drinking water aquifers. Groundwater samples were collected from private wells tapping into the Walloon Coal Measures, the same coal aquifer exploited for coal seam gas production in the Surat Basin, Australia. The inorganic characteristics of these water samples were almost identical to the CSGW entering the nearby gas company operated Talinga-Condabri Water Treatment Facility. The water is brackish with a pH of 8 to 9, high sodium, bicarbonate and chloride concentrations but low calcium, magnesium and negligible sulphate concentrations. Only low levels of polyaromatic hydrocarbons (PAHs) were detected in the water samples, and neither phenols nor volatile organic compounds were found. Results from the bioassays showed no genotoxicity, protein damage, or activation of hormone receptors (with the exception of the estrogen receptor). However, five of the 14 bioassays gave positive responses: an arylhydrocarbon-receptor gene activation assay (AhR-CAFLUX), estrogenic endocrine activity (ERα-CALUX), oxidative stress response (AREc32), interference with cytokine production (THP1-CPA) and non-specific toxicity (Microtox). The observed effects were benchmarked against known water sources and were similar to secondary treated wastewater effluent, stormwater and surface water. As mixture toxicity modelling demonstrated, the detected PAHs explained less than 5% of the observed biological effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Attention has recently focussed on MgB2 superconductors (Tc~39K) which can be formed into wires with high material density and viable critical current densities (Jc)1. However, broader utilisation of this diboride and many others is likely to occur when facile synthesis for bulk applications is developed. To date, common synthesis methods include high temperature sintering of mixed elemental powders2, combustion synthesis3, mechano-chemical mixing with high temperature sintering4 and high pressure (~GPa region) with high temperature. In this work, we report on a lower temperature, moderate (<4MPa) pressure method to synthesise metal diborides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral lamprophyllite is fundamentally a silicate based upon tetrahedral siloxane units with extensive substitution in the formula. Lamprophyllite is a complex group of sorosilicates with general chemical formula given as A2B4C2Si2O7(X)4, where the site A can be occupied by strontium, barium, sodium, and potassium; the B site is occupied by sodium, titanium, iron, manganese, magnesium, and calcium. The site C is mainly occupied by titanium or ferric iron and X includes the anions fluoride, hydroxyl, and oxide. Chemical composition shows a homogeneous phase, composed of Si, Na, Ti, and Fe. This complexity of formula is reflected in the complexity of both the Raman and infrared spectra. The Raman spectrum is characterized by intense bands at 918 and 940 cm−1. Other intense Raman bands are found at 576, 671, and 707 cm−1. These bands are assigned to the stretching and bending modes of the tetrahedral siloxane units.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amelioration of sodic soils is commonly achieved by applying gypsum, which increases soil hydraulic conductivity by altering soil chemistry. The magnitude of hydraulic conductivity increases expected in response to gypsum applications depends on soil properties including clay content, clay mineralogy, and bulk density. The soil analyzed in this study was a kaolinite rich sodic clay soil from an irrigated area of the Lower Burdekin coastal floodplain in tropical North Queensland, Australia. The impact of gypsum amelioration was investigated by continuously leaching soil columns with a saturated gypsum solution, until the hydraulic conductivity and leachate chemistry stabilized. Extended leaching enabled the full impacts of electrolyte effects and cation exchange to be determined. For the columns packed to 1.4 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.41 ± 0.06 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 4.3 ± 2.12 mEq/100 g, and hydraulic conductivity increased to 0.15 ± 0.04 cm/d. For the columns packed to 1.3 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.51 ± 0.03 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 0.55 ± 0.36 mEq/100 g, and hydraulic conductivity increased to 0.96 ± 0.53 cm/d. The results of this study highlight that both sodium and magnesium need to be taken into account when determining the suitability of water quality for irrigation of sodic soils and that soil bulk density plays a major role in controlling the extent of reclamation that can be achieved using gypsum applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that the neutralisation of Bayer liquor with seawater causes the precipitation of stable alkaline products and a reduction in pH and dissolved metal concentrations in the effluent. However, there is limited information available on solution chemistry effects on the stability and reaction kinetics of these precipitates. This investigation shows the influence of reactive species (magnesium and calcium) in seawater on precipitate stabilities and volumetric efficiencies during the neutralisation of bauxite refinery residues. Correlations between synthetic seawater solutions and real samples of seawater (filtered seawater, nanofiltered seawater and reverse osmosis brine) have been made. These investigations have been used to confirm that alternative seawater sources can be used to increase the productivity potential of the neutralisation process with minimal implications on the composition and stability of precipitates formed. The volume efficiency of the neutralisation process using synthetic analogues has been shown to be almost directly proportional with the concentration of magnesium. This was further confirmed in the nanofiltered seawater and reverse osmosis brine that showed increases in the efficiency of neutralisation by factors of 3 and 2 compared to seawater, which corresponds with relatively the same increase in the concentration of magnesium in these alternative seawater sources. An assessment of the chemical stability of the precipitates, volumetric efficiency, and discharge water quality have been determined using numerous techniques that include pH, conductivity, inductively coupled plasma optical emission spectroscopy, infrared spectroscopy, thermogravimetric analysis coupled to mass spectrometry and X-ray diffraction. Correlations between synthetic solution compositions and alternative seawater sources have been used to determine if alternative seawater sources are potential substitutes for seawater based on improvements in productivity, implementation costs, savings to operations and environmental benefits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that the well-known Kohn anomaly predicts Tc for ordered AlB2-type structures. We use ab initio Density Functional Theory to calculate phonon dispersions for Mg1-xAlxB2 compositions and identify a phonon anomaly with magnitude that predicts experimental values of Tc for all x. Key features of these anomalies correlate with the electronic structure of Mg1-xAlxB2. This approach predicts Tc for other known AlB2-type structures as well as new compositions. We predict that Mg0.5Ba0.5B2 will show Tc = 63.6 ± 6.6 K. Other forms of the Mg1-xBaxB2 series will also be superconductors when successfully synthesised. Our calculations predict that the end-member composition, BaB2, is likely to show a Tc significantly higher than currently achieved by other diborides although an applied pressure ~16 GPa may be required to stabilise the structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work explored the applicability of electrocoagulation (EC) using aluminium electrodes for the removal of contaminants which can scale and foul reverse osmosis membranes from a coal seam (CS) water sample, predominantly comprising sodium chloride, and sodium bicarbonate. In general, the removal efficiency of species responsible for scaling and fouling was enhanced by increasing the applied current density/voltage and contact times (30–60 s) in the EC chamber. High removal efficiencies of species potentially responsible for scale formation in reverse osmosis units such as calcium (100%), magnesium (87.9%), strontium (99.3%), barium (100%) and silicates (98.3%) were achieved. Boron was more difficult to eliminate (13.3%) and this was postulated to be due to the elevated solution pH. Similarly, fluoride removal from solution (44%) was also inhibited by the presence of hydroxide ions in the pH range 9–10. Analysis of produced flocs suggested the dominant presence of relatively amorphous boehmite (AlOOH), albeit the formation of Al(OH)3 was not ruled out as the drying process employed may have converted aluminium hydroxide to aluminium oxyhydroxide species. Evidence for adsorption of contaminants on floc surface sites was determined from FTIR studies. The quantity of aluminium released during the electrocoagulation process was higher than the Faradaic amount which suggested that the high salt concentrations in the coal seam water had chemically reacted with the aluminium electrodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Codex Alimentarius Commission of the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO) develops food standards, guidelines and related texts for protecting consumer health and ensuring fair trade practices globally. The major part of the world's population lives in more than 160 countries that are members of the Codex Alimentarius. The Codex Standard on Infant Formula was adopted in 1981 based on scientific knowledge available in the 1970s and is currently being revised. As part of this process, the Codex Committee on Nutrition and Foods for Special Dietary Uses asked the ESPGHAN Committee on Nutrition to initiate a consultation process with the international scientific community to provide a proposal on nutrient levels in infant formulae, based on scientific analysis and taking into account existing scientific reports on the subject. ESPGHAN accepted the request and, in collaboration with its sister societies in the Federation of International Societies on Pediatric Gastroenterology, Hepatology and Nutrition, invited highly qualified experts in the area of infant nutrition to form an International Expert Group (IEG) to review the issues raised. The group arrived at recommendations on the compositional requirements for a global infant formula standard which are reported here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report describes a 32-year-old woman presenting since childhood with progressive calcium pyrophosphate disease (CPPD), characterized by severe arthropathy and chondrocalcinosis involving multiple peripheral joints and intervertebral disks. Because ANKH mutations have been previously described in familial CPPD, the proband's DNA was assessed at this locus by direct sequencing of promoter and coding regions and revealed 3 sequence variants in ANKH. Sequences of exon 1 revealed a novel isolated nonsynonymous mutation (c.13 C>T), altering amino acid in codon 5 from proline to serine (CCG>TCG). Sequencing of parental DNA revealed an identical mutation in the proband's father but not the mother. Subsequent clinical evaluation demonstrated extensive chondrocalcinosis and degenerative arthropathy in the proband's father. In summary, we report a novel mutation, not previously described, in ANKH exon 1, wherein serine replaces proline, in a case of early-onset severe CPPD associated with metabolic abnormalities, with similar findings in the proband's father.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Coal Seam Gas (CSG) industry in Australia has grown significantly in recent years. During the gas extraction process, water is also recovered which is brackish in character. In order to facilitate beneficial reuse of the water, the CSG industry has primarily invested in Reverse Osmosis (RO) as the primary method for associated water desalination. However, the presence of alkaline earth ions in the water combined with the inherent alkalinity of the water may result in RO membrane scaling. Consequently, weak acid cation (WAC) synthetic ion exchange resins were investigated as a potential solution to this potential problem. It was shown that resins were indeed highly efficient at treating single and multi-component solutions of alkaline earth ions. The interaction of the ions with the resin was found to be considerably more complex that previously reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fire resistance of cold-formed light gauge steel frame (LSF) wall systems is enhanced by lining them with single or multiple layers of wall boards with varying thermal properties. These wall boards are gypsum plasterboards or Magnesium Oxide (MgO) boards produced by different manufacturers. Thermal properties of these boards appear to show considerable variations and this can lead to varying fire resistance levels (FRL) for their wall systems. Currently FRLs of wall systems are determined using full scale fire tests, but they are time consuming and expensive. Recent research studies on the fire performance of LSF wall systems have used finite element studies to overcome this problem, but they were developed based on 1-D and 2-D finite element platform capable of performing either heat transfer or structural analysis separately. Hence in this research a 3-D finite element model was developed first for LSF walls lined with gypsum plasterboard and cavity insulation materials. Accurate thermal properties of these boards are essential for finite element modelling, and thus they were measured at both ambient and elevated temperatures. This experimental study included specific heat, relative density and thermal conductivity of boards. The developed 3-D finite element model was then validated using the available fire tests results of LSF walls lined with gypsum plasterboard, and is being used to investigate the fire performance of different LSF wall configurations. The tested MgO board exhibited significant variations in their thermal properties in comparison to gypsum plasterboards with about 50% loss of its initial mass at about 500 ºC compared to 16% for gypsum plasterboards. Hence the FRL of MgO board lined LSF wall systems is likely to be significantly reduced. This paper presents the details of this research study on the fire performance of LSF wall systems lined with gypsum plasterboard and MgO board including the developed 3-D finite element models, thermal property tests and the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthetic, natural, or composite, biomaterials occupy a key position in the management of disease and support continuous advancement of health care. Clinical utility of many permanent and biodegradable implants can be significantly improved via surface modification. Here, we discuss a novel polymer material developed from essential oil-based monoterpene alcohol using plasma polymerisation. The developed coatings are cytocompatible and limit adhesion and proliferation of a variety of pathogens. The coating can also be used to control degradation behaviour of resorbable materials, such as magnesium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are limited studies on the adequacy of prisoner diet and food practices, yet understanding these are important to inform food provision and assure duty of care for this group. The aim of this research was to assess the dietary intakes of prisoners to inform food and nutrition policy in this setting. This research used a cross-sectional design with convenience sampling in a 945 bed male high secure prison. Multiple methods were used to assess food available at the group level, including verification of food portion, quality, and practices. A pictorial tool supported the diet history method. Of 276 eligible prisoners, 120 dietary interviews were conducted and verified against prison records, with 106 deemed plausible. The results showed the planned food to be nutritionally adequate, with the exception of vitamin D for older males and long chain fatty acids, with sodium above Upper Limits. The Australian Dietary Targets for chronic disease risk were not achieved. High energy intakes were reported with median 13.8MJ (SE 0.3MJ). Probability estimates of inadequate intake varied with age groups: magnesium 8% (>30 years), 2.9% (<30 years); calcium 6.0% (>70 years), 1.5% (<70 years); folate 3.5%; zinc and iodine 2.7%; and vitamin A 2.3%. Nutrient intakes were greatly impacted by self-funded snacks. Results suggest nutrient intakes nutritionally favourable when compared to males in the community. This study highlights the complexity of food provision in the prison environment, and also poses questions for population level dietary guidance in delivering appropriate nutrients within energy limits.