224 resultados para 410303 Multimedia
Resumo:
The internet infrastructure which supports high data rates has a major impact on the Australian economy and the world. However, in rural Australia, the provision of broadband services to an internet dispersed population over a large geographical area with low population densities remains both an economic and technical challenge [1]. Furthermore, the implementation of currently available technologies such as fibre-to-the-premise (FTTP), 3G, 4G and WiMAX seems to be impractical, considering the low population density that is distributed in a large area. Therefore, new paradigms and innovative telecommunication technologies need to be explored to overcome the challenges of providing faster and more reliable broadband internet services to internet dispersed rural areas. The research project implements an innovative Multi-User- Single-Antenna for MIMO (MUSA-MIMO) technology using the spectrum currently allocated to analogue TV. MUSAMIMO technology can be considered as a special case of MIMO technology, which is beneficial when provisioning reliable and high-speed communication channels. Particularly, the abstract describes the development of a novel MUSA-MIMO channel model that takes into account temporal variations in the rural wireless environment. This can be considered as a novel approach tailor-made to rural Australia for provisioning efficient wireless broadband communications.
Resumo:
High-speed broadband internet access is widely recognised as a catalyst to social and economic development, having a significant impact on global economy. Rural Australia’s inherent dispersed population over a large geographical area make the delivery of efficient, well-maintained and cost-effective internet a challenging task. The novel and highly-efficient Multi-User-Single-Antenna for MIMO (MUSA-MIMO) broadband wireless communication technology can effectively be used to deliver wireless broadband access to rural areas. This research aims to develop for the first time, an efficient and accurate algorithm for the tracking and prediction of Channel State Information (CSI) at the transmitter, by characterising time variation effects of the wireless communication channel on the performance of a highly-efficient MUSA-MIMO technology particularly suited for rural communities, improving their quality of life and economic prosperity.
Resumo:
Process models are used by information professionals to convey semantics about the business operations in a real world domain intended to be supported by an information system. The understandability of these models is vital to them actually being used. After all, what is not understood cannot be acted upon. Yet until now, understandability has primarily been defined as an intrinsic quality of the models themselves. Moreover, those studies that looked at understandability from a user perspective have mainly conceptualized users through rather arbitrary sets of variables. In this paper we advance an integrative framework to understand the role of the user in the process of understanding process models. Building on cognitive psychology, goal-setting theory and multimedia learning theory, we identify three stages of learning required to realize model understanding, these being Presage, Process, and Product. We define eight relevant user characteristics in the Presage stage of learning, three knowledge construction variables in the Process stage and three potential learning outcomes in the Product stage. To illustrate the benefits of the framework, we review existing process modeling work to identify where our framework can complement and extend existing studies.
Resumo:
This chapter provides an account of the use of Creative Commons (CC) licensing as a legally and operationally effective means by which governments can implement systems to enable open access to and reuse of their public sector information (PSI). It describes the experience of governments in Australia in applying CC licences to PSI in a context where a vast range of material and information produced, collected, commissioned of funded by government is subject to copyright. By applying CC licences, governments can give effect to their open access policies and create a public domain of PSI which is available for resue by other governmental agencies and the community at large.
Resumo:
As part of a development plan-in-progress spanning a total of 25 years(1996 to 2020), Malaysia’s Multimedia Super Corridor (MSC) provides a unique opportunity to witness a brief and microcosmic unfolding of the reciprocally formative process between society and technology that Lewis Mumford lays out in exhaustive detail in Technics and Civilization (Mumford, 1963). The interlocking of national imagining, destiny and progress with a specific group of technologies, information and communication technologies (ICT) is, in itself, worthy of interest. However, what renders the MSC doubly remarkable is its introduction in Malaysia, one of the most well established of contemporary ethnocracies. This chapter reads the development and implementation of the MSC as the text through which the association between nation and ethnicity is examined. Broadly speaking I argue here that the MSC inflects the imagining(s) of Malaysia at two levels. At the first level where the MSC is understood to be the insertion of a new policy into Malaysia’s pre-existent ethnocratic climate, I contend the MSC inflects the nation through its incongruence with prevalent conditions. At the second level, where the MSC is viewed through the position of its Chinese populace, I suggest that the MSC inflects Malaysia (perhaps to a lesser degree) through the re-emphasis it lends to issues of transnationalism and belonging for the Malaysian Chinese.
Resumo:
Presentation of research projects
Resumo:
Whilst a variety of studies has appeared over the last decade addressing the gap between the potential promised by computers and the reality experienced in the classroom by teachers and students, few have specifically addressed the situation as it pertains to the visual arts classroom. The aim of this study was to explore the reality of the classroom use of computers for three visual arts highschool teachers and determine how computer technology might enrich visual arts teaching and learning. An action research approach was employed to enable the researcher to understand the situation from the teachers' points of view while contributing to their professional practice. The wider social context surrounding this study is characterised by an increase in visual communications brought about by rapid advances in computer technology. The powerful combination of visual imagery and computer technology is illustrated by continuing developments in the print, film and television industries. In particular, the recent growth of interactive multimedia epitomises this combination and is significant to this study as it represents a new form of publishing of great interest to educators and artists alike. In this social context, visual arts education has a significant role to play. By cultivating a critical awareness of the implications of technology use and promoting a creative approach to the application of computer technology within the visual arts, visual arts education is in a position to provide an essential service to students who will leave high school to participate in a visual information age as both consumers and producers.
Resumo:
Malaysia’s Vision 2020 for enhancing its education system includes the development of scientific literacy commencing at the primary school level. This Vision focuses on using English as the Medium of Instruction (EMI) for teaching primary science, as Malaysia has English as a Foreign Language (EFL) in its curriculum. What changes need to occur in preservice teacher education programs for learning about primary science using EMI? This paper investigates the education of Malaysian preservice teachers for learning how to teach one strand in science education (i.e., space, primary astronomy) in an English-language context. Ninety-six second-year preservice teachers from two Malaysian institutes were involved in a 16-week “Earth and Space” course, half the course involved education about primary astronomy. Seventy-five of these preservice teachers provided written responses about the course and their development as potential teachers of primary astronomy using EMI. Preservice teacher assessments and multimedia presentations provided further evidence on learning how to teach primary astronomy. Many of these preservice teachers claimed that learning to teach primary astronomy needs to focus on teaching strategies, content knowledge with easy-to-understand concepts, computer simulations (e.g., Earth Centered Universe, Stellarium, Celestia), other ICT media, and field experiences that use naked-eye observations and telescopes to investigate celestial bodies. Although generally proficient in using ICT, they claimed there were EFL barriers for learning some new terminology. Nevertheless, powerpoints, animations, videos, and simulations were identified as effective ICT tools for providing clear visual representations of abstract concepts and ways to enhance the learning process.
Resumo:
In mobile videos, small viewing size and bitrate limitation often cause unpleasant viewing experiences, which is particularly important for fast-moving sports videos. For optimizing the overall user experience of viewing sports videos on mobile phones, this paper explores the benefits of emphasizing Region of Interest (ROI) by 1) zooming in and 2) enhancing the quality. The main goal is to measure the effectiveness of these two approaches and determine which one is more effective. To obtain a more comprehensive understanding of the overall user experience, the study considers user’s interest in video content and user’s acceptance of the perceived video quality, and compares the user experience in sports videos with other content types such as talk shows. The results from a user study with 40 subjects demonstrate that zooming and ROI-enhancement are both effective in improving the overall user experience with talk show and mid-shot soccer videos. However, for the full-shot scenes in soccer videos, only zooming is effective while ROI-enhancement has a negative effect. Moreover, user’s interest in video content directly affects not only the user experience and the acceptance of video quality, but also the effect of content type on the user experience. Finally, the overall user experience is closely related to the degree of the acceptance of video quality and the degree of the interest in video content. This study is valuable in exploiting effective approaches to improve user experience, especially in mobile sports video streaming contexts, whereby the available bandwidth is usually low or limited. It also provides further understanding of the influencing factors of user experience.
Resumo:
Advances in digital technology have caused a radical shift in moving image culture. This has occurred in both modes of production and sites of exhibition, resulting in a blurring of boundaries that previously defined a range of creative disciplines. Re-Imagining Animation: The Changing Face of the Moving Image, by Paul Wells and Johnny Hardstaff, argues that as a result of these blurred disciplinary boundaries, the term “animation” has become a “catch all” for describing any form of manipulated moving image practice. Understanding animation predicates the need to (re)define the medium within contemporary moving image culture. Via a series of case studies, the book engages with a range of moving image works, interrogating “how the many and varied approaches to making film, graphics, visual artefacts, multimedia and other intimations of motion pictures can now be delineated and understood” (p. 7). The structure and clarity of content make this book ideally suited to any serious study of contemporary animation which accepts animation as a truly interdisciplinary medium.
Resumo:
With regard to the long-standing problem of the semantic gap between low-level image features and high-level human knowledge, the image retrieval community has recently shifted its emphasis from low-level features analysis to high-level image semantics extrac- tion. User studies reveal that users tend to seek information using high-level semantics. Therefore, image semantics extraction is of great importance to content-based image retrieval because it allows the users to freely express what images they want. Semantic content annotation is the basis for semantic content retrieval. The aim of image anno- tation is to automatically obtain keywords that can be used to represent the content of images. The major research challenges in image semantic annotation are: what is the basic unit of semantic representation? how can the semantic unit be linked to high-level image knowledge? how can the contextual information be stored and utilized for image annotation? In this thesis, the Semantic Web technology (i.e. ontology) is introduced to the image semantic annotation problem. Semantic Web, the next generation web, aims at mak- ing the content of whatever type of media not only understandable to humans but also to machines. Due to the large amounts of multimedia data prevalent on the Web, re- searchers and industries are beginning to pay more attention to the Multimedia Semantic Web. The Semantic Web technology provides a new opportunity for multimedia-based applications, but the research in this area is still in its infancy. Whether ontology can be used to improve image annotation and how to best use ontology in semantic repre- sentation and extraction is still a worth-while investigation. This thesis deals with the problem of image semantic annotation using ontology and machine learning techniques in four phases as below. 1) Salient object extraction. A salient object servers as the basic unit in image semantic extraction as it captures the common visual property of the objects. Image segmen- tation is often used as the �rst step for detecting salient objects, but most segmenta- tion algorithms often fail to generate meaningful regions due to over-segmentation and under-segmentation. We develop a new salient object detection algorithm by combining multiple homogeneity criteria in a region merging framework. 2) Ontology construction. Since real-world objects tend to exist in a context within their environment, contextual information has been increasingly used for improving object recognition. In the ontology construction phase, visual-contextual ontologies are built from a large set of fully segmented and annotated images. The ontologies are composed of several types of concepts (i.e. mid-level and high-level concepts), and domain contextual knowledge. The visual-contextual ontologies stand as a user-friendly interface between low-level features and high-level concepts. 3) Image objects annotation. In this phase, each object is labelled with a mid-level concept in ontologies. First, a set of candidate labels are obtained by training Support Vectors Machines with features extracted from salient objects. After that, contextual knowledge contained in ontologies is used to obtain the �nal labels by removing the ambiguity concepts. 4) Scene semantic annotation. The scene semantic extraction phase is to get the scene type by using both mid-level concepts and domain contextual knowledge in ontologies. Domain contextual knowledge is used to create scene con�guration that describes which objects co-exist with which scene type more frequently. The scene con�guration is represented in a probabilistic graph model, and probabilistic inference is employed to calculate the scene type given an annotated image. To evaluate the proposed methods, a series of experiments have been conducted in a large set of fully annotated outdoor scene images. These include a subset of the Corel database, a subset of the LabelMe dataset, the evaluation dataset of localized semantics in images, the spatial context evaluation dataset, and the segmented and annotated IAPR TC-12 benchmark.
Resumo:
Background Falls are a common adverse event during hospitalization of older adults, and few interventions have been shown to prevent then. Methods This study was a 3-group randomized trial to evaluate the efficacy of 2 forms of multimedia patient education compared with usual care for the prevention of in-hospital falls. Older hospital patients (n = 1206) admitted to a mixture of acute (orthopedic, respiratory, and medical) and subacute (geriatric and neurorehabilitation) hospital wards at 2 Australian hospitals were recruited between January 2008 and April 2009. The interventions were a multimedia patient education program based on the health-belief model combined with trained health professional follow-up (complete program), multi-media patient education materials alone (materials only), and usual care (control). Falls data were collected by blinded research assistants by reviewing hospital incident reports, hand searching medical records, and conducting weekly patient interviews. Results Rates of falls per 1000 patient-days did not differ significantly between groups (control, 9.27; materials only, 8.61; and complete program, 7.63). However, there was a significant interaction between the intervention and presence of cognitive impairment. Falls were less frequent among cognitively intact patients in the complete program group (4.01 per 1000 patient-days) than among cognitively intact patients in the materials-only group (8.18 per 1000 patient-days) (adjusted hazard ratio, 0.51; 95% confidence interval, 0.28-0.93]) and control group (8.72 per 1000 patient-days) (adjusted hazard ratio, 0.43; 95% confidence interval, 0.24-0.78). Conclusion Multimedia patient education with trained health professional follow-up reduced falls among patients with intact cognitive function admitted to a range of hospital wards.