457 resultados para 3D measurement
Resumo:
Effective management of groundwater requires stakeholders to have a realistic conceptual understanding of the groundwater systems and hydrological processes.However, groundwater data can be complex, confusing and often difficult for people to comprehend..A powerful way to communicate understanding of groundwater processes, complex subsurface geology and their relationships is through the use of visualisation techniques to create 3D conceptual groundwater models. In addition, the ability to animate, interrogate and interact with 3D models can encourage a higher level of understanding than static images alone. While there are increasing numbers of software tools available for developing and visualising groundwater conceptual models, these packages are often very expensive and are not readily accessible to majority people due to complexity. .The Groundwater Visualisation System (GVS) is a software framework that can be used to develop groundwater visualisation tools aimed specifically at non-technical computer users and those who are not groundwater domain experts. A primary aim of GVS is to provide management support for agencies, and enhancecommunity understanding.
Resumo:
We aimed to investigate the naturally occurring horizontal plane movements of a head stabilized in a standard ophthalmic headrest and to analyze their magnitude, velocity, spectral characteristics, and correlation to the cardio pulmonary system. Two custom-made air-coupled highly accurate (±2 μm)ultrasound transducers were used to measure the displacements of the head in different horizontal directions with a sampling frequency of 100 Hz. Synchronously to the head movements, an electrocardiogram (ECG) signal was recorded. Three healthy subjects participated in the study. Frequency analysis of the recorded head movements and their velocities was carried out, and functions of coherence between the two displacements and the ECG signal were calculated. Frequency of respiration and the heartbeat were clearly visible in all recorded head movements. The amplitude of head displacements was typically in the range of ±100 μm. The first harmonic of the heartbeat (in the range of 2–3 Hz), rather than its principal frequency, was found to be the dominant frequency of both head movements and their velocities. Coherence analysis showed high interdependence between the considered signals for frequencies of up to 20 Hz. These findings may contribute to the design of better ophthalmic headrests and should help other studies in the decision making of whether to use a heavy headrest or a bite bar.
Resumo:
This paper presents an analysis of phasor measurement method for tracking the fundamental power frequency to show if it has the performance necessary to cope with the requirements of power system protection and control. In this regard, several computer simulations presenting the conditions of a typical power system signal especially those highly distorted by harmonics, noise and offset, are provided to evaluate the response of the Phasor Measurement (PM) technique. A new method, which can shorten the delay of estimation, has also been proposed for the PM method to work for signals free of even-order harmonics.
Resumo:
The Howard East rural area has experienced a rapid growth of small block subdivisions and horticulture over the last 40 years, which has been based on groundwater supply. Early bores in the area provide part of the water supply for Darwin City and are maintained and monitored by NT Power & Water Corporation. The Territory government (NRETAS) has established a monitoring network, and now 48 bores are monitored. However, in the area there are over 2700 private bores that are unregulated.Although NRETAS has both FDM and FEM simulations for the region, community support for potential regulation is sought. To improve stakeholder understanding of the resource QUT was retained by the TRaCKconsortium to develop a 3D visualisation of the groundwater system.
Resumo:
Background: SEQ Catchments Ltd and QUT are collaborating on groundwater investigations in the SE Qld region, which utilise community engagement and 3D Visualisation methodologies. The projects, which have been funded by the Australian Government’s NHT and Caring for our Country programmes, were initiated from local community concerns regarding groundwater sustainability and quality in areas where little was previously known. ----- Objectives: Engage local and regional stakeholders to tap all available sources of information;•Establish on-going (2 years +) community-based groundwater / surface water monitoring programmes;•Develop 3D Visualisation from all available data; and•Involve, train and inform the local community for improved on-ground land and water use management. ----- Results and findings: Respectful community engagement yielded information, access to numerous monitoring sites and education opportunities at low cost, which would otherwise be unavailable. A Framework for Community-Based Groundwater Monitoring has been documented (Todd, 2008).A 3D visualisation models have been developed for basaltic settings, which relate surface features familiar to the local community with the interpreted sub-surface hydrogeology. Groundwater surface movements have been animated and compared to local rainfall using the time-series monitoring data.An important 3D visualisation feature of particular interest to the community was the interaction between groundwater and surface water. This factor was crucial in raising awareness of potential impacts of land and water use on groundwater and surface water resources.
Resumo:
This presentation outlines key aspects of public policy in broad terms insofar as they relate to establishment, implementation and compliance with legal measurement standards. It refers in particular to traceability of a legal measurement unit from its source in a single international standard as a compliance issue. It comments on accreditation of legal measurement and liability concerned with errors in measurement.
Resumo:
The complex relationship between the hydrodynamic environment and surrounding tissues directly impacts on the design and production of clinically useful grafts and implants. Tissue engineers have generally seen bioreactors as 'black boxes' within which tissue engineering constructs (TECs) are cultured. It is accepted that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved by using computational fluid dynamics (CFD) technology. This review discusses applications of CFD for tissue engineering-related bioreactors -- fluid flow processes have direct implications on cellular responses such as attachment, migration and proliferation. We conclude that CFD should be seen as an invaluable tool for analyzing and visualizing the impact of fluidic forces and stresses on cells and TECs.
Resumo:
Purpose: In 1970, Enright observed a distortion of perceived driving speed, induced by monocular application of a neutral density (ND) filter. If a driver looks out of the right side of a vehicle with a filter over the right eye, the driver perceives a reduction of the vehicle’s apparent velocity, while applying a ND filter over the left eye increases the vehicle’s apparent velocity. The purpose of the current study was to provide the first empirical measurements of the Enright phenomenon. Methods: Ten experienced drivers were tested and drove an automatic sedan on a closed road circuit. Filters (0.9 ND) were placed over the left, right or both eyes during a driving run, in addition to a control condition with no filters in place. Subjects were asked to look out of the right side of the car and adjust their driving speed to either 40 km/h or 60 km/h. Results: Without a filter or with both eyes filtered subjects showed good estimation of speed when asked to travel at 60 km/h but travelled a mean of 12 to 14 km/h faster than the requested 40 km/h. Subjects travelled faster than these baselines by a mean of 7 to 9 km/h (p < 0.001) with the filter over their right eye, and 3 to 5 km/h slower with the filter over their left eye (p < 0.05). Conclusions: The Enright phenomenon causes significant and measurable distortions of perceived driving speed under realworld driving conditions.
Resumo:
Over recent years, many scholars have studied the conceptual modeling of information systems based on a theory of ontological expressiveness. This theory offers four constructs that inform properties of modeling grammars in the form of ontological deficiencies, and their implications for development and use of conceptual modeling in IS practice. In this paper we report on the development of a valid and reliable instrument for measuring the perceptions that individuals have of the ontological deficiencies of conceptual modeling grammars. We describe a multi-stage approach for instrument development that incorporates feedback from expert and user panels. We also report on a field test of the instrument with 590 modeling practitioners. We further study how different levels of modeling experience influence user perceptions of ontological deficiencies of modeling grammars. We provide implications for practice and future research.
Resumo:
To maintain or achieve competitiveness and profitability, a manufacturing firm or enterprise must respond to a range of challenges, including rapid improvements in technology; declining employment and output; globalisation of markets and environmental requirements. In addition, substantial changes in government policy have had important impacts in many countries, as have the increasing levels of global trade. Manufacturing enterprises need to have a clear understanding of what their customers want and why customers purchase their products rather than purchase from their competitors. They need to fully understand the aims of the business in terms of its customers, market segments, product attributes, geographical markets and performance. Continuous Improvement (CI) methods have become widely adopted and regarded as providing an important component of increased company competitiveness. This article examines the extent to which continuous improvement activities have contributed to the different areas of business performance.
Resumo:
It is widely held that strong relationships exist between housing, economic status, and well being. This is exemplified by widespread housing stock surpluses in many countries which threaten to destabilise numerous aspects related to individuals and community. However, the position of housing demand and supply is not consistent. The Australian position provides a distinct contrast whereby seemingly inexorable housing demand generally remains a critical issue affecting the socio-economic landscape. Underpinned by high levels of immigration, and further buoyed by sustained historically low interest rates, increasing income levels, and increased government assistance for first home buyers, this strong housing demand ensures elements related to housing affordability continue to gain prominence. A significant, but less visible factor impacting housing affordability – particularly new housing development – relates to holding costs. These costs are in many ways “hidden” and cannot always be easily identified. Although it is only one contributor, the nature and extent of its impact requires elucidation. In its simplest form, it commences with a calculation of the interest or opportunity cost of land holding. However, there is significantly more complexity for major new developments - particularly greenfield property development. Preliminary analysis conducted by the author suggests that even small shifts in primary factors impacting holding costs can appreciably affect housing affordability – and notably, to a greater extent than commonly held. Even so, their importance and perceived high level impact can be gauged from the unprecedented level of attention policy makers have given them over recent years. This may be evidenced by the embedding of specific strategies to address burgeoning holding costs (and particularly those cost savings associated with streamlining regulatory assessment) within statutory instruments such as the Queensland Housing Affordability Strategy, and the South East Queensland Regional Plan. However, several key issues require investigation. Firstly, the computation and methodology behind the calculation of holding costs varies widely. In fact, it is not only variable, but in some instances completely ignored. Secondly, some ambiguity exists in terms of the inclusion of various elements of holding costs, thereby affecting the assessment of their relative contribution. Perhaps this may in part be explained by their nature: such costs are not always immediately apparent. Some forms of holding costs are not as visible as the more tangible cost items associated with greenfield development such as regulatory fees, government taxes, acquisition costs, selling fees, commissions and others. Holding costs are also more difficult to evaluate since for the most part they must be ultimately assessed over time in an ever-changing environment, based on their strong relationship with opportunity cost which is in turn dependant, inter alia, upon prevailing inflation and / or interest rates. By extending research in the general area of housing affordability, this thesis seeks to provide a more detailed investigation of those elements related to holding costs, and in so doing determine the size of their impact specifically on the end user. This will involve the development of soundly based economic and econometric models which seek to clarify the componentry impacts of holding costs. Ultimately, there are significant policy implications in relation to the framework used in Australian jurisdictions that promote, retain, or otherwise maximise, the opportunities for affordable housing.
Resumo:
Process modeling is a complex organizational task that requires many iterations and communication between the business analysts and the domain specialists involved in the process modeling. The challenge of process modeling is exacerbated, when the process of modeling has to be performed in a cross-organizational, distributed environment. Some systems have been developed to support collaborative process modeling, all of which use traditional 2D interfaces. We present an environment for collaborative process modeling, using 3D virtual environment technology. We make use of avatar instantiations of user ego centres, to allow for the spatial embodiment of the user with reference to the process model. We describe an innovative prototype collaborative process modeling approach, implemented as a modeling environment in Second Life. This approach leverages the use of virtual environments to provide user context for editing and collaborative exercises. We present a positive preliminary report on a case study, in which a test group modelled a business process using the system in Second Life.
Resumo:
Abstract: This paper details an in-vitro study using human adipose tissue-derived precursor/stem cells (ADSCs) in three-dimensional (3D) tissue culture systems. ADSCs from 3 donors were seeded onto NaOH-treated medical grade polycaprolactone-tricalcium phosphate (mPCL-TCP) scaffolds with two different matrix components; fibrin glue and lyophilized collagen. ADSCs within these scaffolds were then induced to differentiate along the osteogenic lineage for a 28-day period and various assays and imaging techniques were performed at Day 1, 7, 14, 21 and 28 to assess and compare the ADSC’s adhesion, viability, proliferation, metabolism and differentiation along the osteogenic lineage when cultured in the different scaffold/matrix systems. The ADSC cells were proliferative in both collagen and fibrin mPCL-TCP scaffold systems with a consistently higher cell number (by comparing DNA amounts) in the induced group over the non-induced groups for both scaffold systems. In response to osteogenic induction, these ADSCs expressed elevated osteocalcin, alkaline phosphatase and osteonectin levels. Cells were able to proliferate within the pores of the scaffolds and form dense cellular networks after 28 days of culture and induction. The successful cultivation of osteogenic by FDM process manufactured ADSCs within a 3D matrix comprising fibrin glue or collagen, immobilized within a robust synthetic scaffold is a promising technique which should enhance their potential usage in the regenerative medicine arena, such as bone tissue engineering.
Resumo:
Magnetic Resonance Imaging (MRI) offers a valuable research tool for the assessment of 3D spinal deformity in AIS, however the horizontal patient position imposed by conventional scanners removes the axial compressive loading on the spine which is an important determinant of deformity shape and magnitude in standing scoliosis patients. The objective of this study was to design, construct and test an MRI compatible compression device for research into the effect of axial loading on spinal deformity using supine MRI scans. The compression device was designed and constructed, consisting of a vest worn by the patient, which was attached via straps to a pneumatically actuated footplate. An applied load of 0.5 x bodyweight was remotely controlled by a unit in the scanner operator’s console. The entire device was constructed using non-metallic components for MRI compatibility. The device was evaluated by performing unloaded and loaded supine MRI scans on a series of 10 AIS patients. The study concluded that an MRI compatible compression device had been successfully designed and constructed, providing a research tool for studies into the effect of axial loading on 3D spinal deformity in scoliosis. The 3D axially loaded MR imaging capability developed in this study will allow future research investigations of the effect of axial loading on spinal rotation, and for imaging the response of scoliotic spinal tissues to axial loading.
Resumo:
Adolescent Idiopathic Scoliosis (AIS) has been associated with reduced pulmonary function believed to be due to a restriction of lung volume by the deformed thoracic cavity. A recent study by our group examined the changes in lung volume pre and post anterior thoracoscopic scoliosis correction using pulmonary function testing (1), however the anatomical changes in ribcage shape and left/right lung volume after thoracoscopic surgery which govern overall respiratory capacity are unknown. The aim of this study was to use 3D rendering from CT scan data to compare lung and ribcage anatomical changes from pre to two years post thoracoscopic anterior scoliosis correction. The study concluded that 3D volumetric reconstruction from CT scans is a powerful means of evaluating changes in pulmonary and thoracic anatomy following surgical AIS correction. Most likely, lung volume changes following thoracoscopic scoliosis correction are multifactorial and affected by changes in height (due to residual growth), ribcage shape, diaphragm positioning, Cobb angle correction in the thoracic spine. Further analysis of the 3D reconstructions will be performed to assess how each of these factors affect lung volume in this patient cohort.