79 resultados para 340-U1394B
Resumo:
An open-label inpatient study is in progress to compare the efficacy and safety of two oral rehydration solutions in children and infants with acute diarrhea and mild to moderate dehydration. One solution (ORS-60) contains 60 mmol/L of sodium and 1.8% glucose, with a total osmolatity of 240 mosm/kg; the other (ORS-26) contains 26 mmol/L of sodium, 2.7% glucose, and 3.6% sucrose, with a total osmolality of 340 mosm/kg. An outcome analysis of 28 children with gastroenteritis indicated that ORS-60 (n = 13) reduced stool volume during the first eight hours after admission to a significantly greater (P < 0.05) extent than did ORS-26 (n = 15). Diarrhea had ceased by 24 hours in 64% of ORS-60 patients but in only 31% of ORS-26 patients, and the patients' clinical conidition was improved at eight hours in 84% of ORS-60 patients versus 60% of ORS-26 patients. Differences between treatments in degree of dehydration at each follow-up point, total duration of diarrhea, and duration of hospital stay were not detected. No adverse drug reactions occurred. Four patients received intravenous rehydration therapy, but none was considered a treatment failure. We conclude that the lower osmolar solution, ORS-60, conferred earlier recovey and reduced continuing fluid losses in the management of gastroenteritis.
Resumo:
A genome-wide association study (GWAS) of educational attainment was conducted in a discovery sample of 101,069 individuals and a replication sample of 25,490. Three independent single-nucleotide polymorphisms (SNPs) are genome-wide significant (rs9320913, rs11584700, rs4851266), and all three replicate. Estimated effects sizes are small (coefficient of determination R(2) approximately 0.02%), approximately 1 month of schooling per allele. A linear polygenic score from all measured SNPs accounts for approximately 2% of the variance in both educational attainment and cognitive function. Genes in the region of the loci have previously been associated with health, cognitive, and central nervous system phenotypes, and bioinformatics analyses suggest the involvement of the anterior caudate nucleus. These findings provide promising candidate SNPs for follow-up work, and our effect size estimates can anchor power analyses in social-science genetics.
Resumo:
The intermittently rivet fastened Rectangular Hollow Flange Channel Beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange channel beams. It is a monosymmetric channel section made by intermittently rivet fastening two torsionally rigid rectangular hollow flanges to a web plate. This process enables the end users to choose an effective combination of different web and flange plate sizes to achieve optimum design capacities. Recent research studies focused mainly on the shear behaviour of the most commonly used lipped channel beam and welded hollow flange beam sections. However, the shear behaviour of rivet fastened RHFCB has not been investigated. Therefore a detailed experimental study involving 24 shear tests was undertaken to investigate the shear behaviour and capacities of rivet fastened RHFCBs. Simply supported test specimens of RHFCB with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Comparison of experimental shear capacities with corresponding predictions from the current Australian cold-formed steel design rules showed that the current design rules are very conservative for the shear design of rivet fastened RHFCBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Such enhancements to the shear behaviour and capacity were achieved with a rivet spacing of 100 mm. Improved design rules were proposed for rivet fastened RHFCBs based on the current shear design equations in AISI S100 and the direct strength method. This paper presents the details of this experimental investigation and the results.
Resumo:
Exploring high-performance anode materials is currently one of the most urgent issues towards practical sodium-ion batteries (SIBs). In this work, Bi2S3 is demonstrated to be a high-capacity anode for SIBs for the first time. The specific capacity of Bi2S3 nanorods achieves up to 658 and 264 mAh g-1 at a current density of 100 and 2000 mA g-1, respectively. A full cell with Na3V2(PO4)3-based cathode is also assembled as a proof of concept and delivers 340 mAh g-1 at 100 mA g-1. The sodium storage mechanism of Bi2S3 is investigated by ex-situ XRD coupled with high-resolution TEM (HRTEM), and it is found that sodium storage is achieved by a combined conversion-intercalation mechanism.