812 resultados para 0905 Civil Engineering
Resumo:
A number of studies have focused on estimating the effects of accessibility on housing values by using the hedonic price model. In the majority of studies, estimation results have revealed that housing values increase as accessibility improves, although the magnitude of estimates has varied across studies. Adequately estimating the relationship between transportation accessibility and housing values is challenging for at least two reasons. First, the monocentric city assumption applied in location theory is no longer valid for many large or growing cities. Second, rather than being randomly distributed in space, housing values are clustered in space—often exhibiting spatial dependence. Recognizing these challenges, a study was undertaken to develop a spatial lag hedonic price model in the Seoul, South Korea, metropolitan region, which includes a measure of local accessibility as well as systemwide accessibility, in addition to other model covariates. Although the accessibility measures can be improved, the modeling results suggest that the spatial interactions of apartment sales prices occur across and within traffic analysis zones, and the sales prices for apartment communities are devalued as accessibility deteriorates. Consistent with findings in other cities, this study revealed that the distance to the central business district is still a significant determinant of sales price.
Resumo:
Expert panels have been used extensively in the development of the "Highway Safety Manual" to extract research information from highway safety experts. While the panels have been used to recommend agendas for new and continuing research, their primary role has been to develop accident modification factors—quantitative relationships between highway safety and various highway safety treatments. Because the expert panels derive quantitative information in a “qualitative” environment and because their findings can have significant impacts on highway safety investment decisions, the expert panel process should be described and critiqued. This paper is the first known written description and critique of the expert panel process and is intended to serve professionals wishing to conduct such panels.
Resumo:
Understanding the expected safety performance of rural signalized intersections is critical for (a) identifying high-risk sites where the observed safety performance is substantially worse than the expected safety performance, (b) understanding influential factors associated with crashes, and (c) predicting the future performance of sites and helping plan safety-enhancing activities. These three critical activities are routinely conducted for safety management and planning purposes in jurisdictions throughout the United States and around the world. This paper aims to develop baseline expected safety performance functions of rural signalized intersections in South Korea, which to date have not yet been established or reported in the literature. Data are examined from numerous locations within South Korea for both three-legged and four-legged configurations. The safety effects of a host of operational and geometric variables on the safety performance of these sites are also examined. In addition, supplementary tables and graphs are developed for comparing the baseline safety performance of sites with various geometric and operational features. These graphs identify how various factors are associated with safety. The expected safety prediction tables offer advantages over regression prediction equations by allowing the safety manager to isolate specific features of the intersections and examine their impact on expected safety. The examination of the expected safety performance tables through illustrated examples highlights the need to correct for regression-to-the-mean effects, emphasizes the negative impacts of multicollinearity, shows why multivariate models do not translate well to accident modification factors, and illuminates the need to examine road safety carefully and methodically. Caveats are provided on the use of the safety performance prediction graphs developed in this paper.
Resumo:
Now in its second edition, this book describes tools that are commonly used in transportation data analysis. The first part of the text provides statistical fundamentals while the second part presents continuous dependent variable models. With a focus on count and discrete dependent variable models, the third part features new chapters on mixed logit models, logistic regression, and ordered probability models. The last section provides additional coverage of Bayesian statistical modeling, including Bayesian inference and Markov chain Monte Carlo methods. Data sets are available online to use with the modeling techniques discussed.
Resumo:
A study was done to develop macrolevel crash prediction models that can be used to understand and identify effective countermeasures for improving signalized highway intersections and multilane stop-controlled highway intersections in rural areas. Poisson and negative binomial regression models were fit to intersection crash data from Georgia, California, and Michigan. To assess the suitability of the models, several goodness-of-fit measures were computed. The statistical models were then used to shed light on the relationships between crash occurrence and traffic and geometric features of the rural signalized intersections. The results revealed that traffic flow variables significantly affected the overall safety performance of the intersections regardless of intersection type and that the geometric features of intersections varied across intersection type and also influenced crash type.
Resumo:
Large trucks are involved in a disproportionately small fraction of the total crashes but a disproportionately large fraction of fatal crashes. Large truck crashes often result in significant congestion due to their large physical dimensions and from difficulties in clearing crash scenes. Consequently, preventing large truck crashes is critical to improving highway safety and operations. This study identifies high risk sites (hot spots) for large truck crashes in Arizona and examines potential risk factors related to the design and operation of the high risk sites. High risk sites were identified using both state of the practice methods (accident reduction potential using negative binomial regression with long crash histories) and a newly proposed method using Property Damage Only Equivalents (PDOE). The hot spots identified via the count model generally exhibited low fatalities and major injuries but large minor injuries and PDOs, while the opposite trend was observed using the PDOE methodology. The hot spots based on the count model exhibited large AADTs, whereas those based on the PDOE showed relatively small AADTs but large fractions of trucks and high posted speed limits. Documented site investigations of hot spots revealed numerous potential risk factors, including weaving activities near freeway junctions and ramps, absence of acceleration lanes near on-ramps, small shoulders to accommodate large trucks, narrow lane widths, inadequate signage, and poor lighting conditions within a tunnel.
Resumo:
Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.
Resumo:
Statisticians along with other scientists have made significant computational advances that enable the estimation of formerly complex statistical models. The Bayesian inference framework combined with Markov chain Monte Carlo estimation methods such as the Gibbs sampler enable the estimation of discrete choice models such as the multinomial logit (MNL) model. MNL models are frequently applied in transportation research to model choice outcomes such as mode, destination, or route choices or to model categorical outcomes such as crash outcomes. Recent developments allow for the modification of the potentially limiting assumptions of MNL such as the independence from irrelevant alternatives (IIA) property. However, relatively little transportation-related research has focused on Bayesian MNL models, the tractability of which is of great value to researchers and practitioners alike. This paper addresses MNL model specification issues in the Bayesian framework, such as the value of including prior information on parameters, allowing for nonlinear covariate effects, and extensions to random parameter models, so changing the usual limiting IIA assumption. This paper also provides an example that demonstrates, using route-choice data, the considerable potential of the Bayesian MNL approach with many transportation applications. This paper then concludes with a discussion of the pros and cons of this Bayesian approach and identifies when its application is worthwhile
Resumo:
A one-dimensional pressure filtration model that can be used to predict the behaviour of bagasse pulp has been developed and verified in this study.The dynamic filtration model uses steady state compressibility parameters determined experimentally by uniaxial loading. The compressibility parameters M and N for depithed bagasse pulp were determined to be in the ranges 3000–8000kPa and 2.5–3.0 units, respectively. The model also incorporates experimentally determined steady state permeability data from separate experiments to predict the pulp concentration and fibre pressure throughout a pulp mat during dynamic filtration. Under steady state conditions, a variable Kozeny factor required different values for the permeability parameters when compared to a constant Kozeny factor. The specific surface area was 25–30% lower and the swelling factor was 20–25% higher when a variable Kozeny factor was used. Excellent agreement between experimental data and the dynamic filtration model was achieved when a variable Kozeny factor was used.
Resumo:
This paper describes the behaviour of very high strength (VHS) circular steel tubes strengthened by carbon fibre reinforced polymer (CFRP) and subjected to axial tension. A series of tests were conducted with different bond lengths and number of layers. The distribution of strain through the thickness of CFRP layers and along CFRP bond length was studied. The strain was found to generally decrease along the CFRP bond length far from the joint. The strain through the thickness of the CFRP layers was also found to decrease from bottom to top layer. The effective bond length for high modulus CFRP was established. Finally empirical models were developed to estimate the maximum load for a given CFRP arrangement.
Resumo:
Dynamic computer simulation techniques are used to develop and apply a multi-criteria procedure, incorporating changes in natural frequencies, modal flexibility and the modal strain energy, for damage localisation in beams and plates. Numerically simulated modal data obtained through finite element analyses are used to develop algorithms based on changes of modal flexibility and modal strain energy before and after damage and used as the indices for assessment of the state of structural health. The proposed procedure is illustrated through its application to flexural members under different damage scenarios and the results confirm its feasibility for damage assessment.
Resumo:
This paper reports on the development of specifications for an on-board mass monitoring (OBM) application for regulatory requirements in Australia. An earlier paper reported on feasibility study and pilot testing program prior to the specification development [1]. Learnings from the pilot were used to refine this testing process and a full scale testing program was conducted from July to October 2008. The results from the full scale test and evidentiary implications are presented in this report. The draft specification for an evidentiary on-board mass monitoring application is currently under development.
Resumo:
Track defects cause profound effects to the stability of railway wagons; normally such problems are modeled for cases of wagons running at constant speed. Brake/traction torque adversely affect the wheel-rail contact characteristics but they are not explicitly considered in most of the wagon-track interaction simulation packages. This research developed a program that can simulate the longitudinal behaviour of railway wagon dynamics under the actions of braking or traction torques. This paper describes the mathematical formulation of modelling of a full wagon system using a fixed coordinate reference system. The effect of both the lateral and the vertical track geometry defects to the dynamics of wagons is reported; sensitivity of traction/brake state is analysed through a series of numerical examples.
Resumo:
Thin bed technology for clay/ concrete masonry is gaining popularity in many parts of the developed economy in recent times through active engagement of the industry with the academia. One of the main drivers for the development of thin bed technology is the progressive contraction of the professional brick and block laying workforce as the younger generation is not attracted towards this profession due to the general perception of the society towards manual work as being outdated in the modern digital economy. This situation has led to soaring cost of skilled labour associated with the general delay in completion of construction activities in recent times. In parallel, the advent of manufacturing technologies in producing bricks and blocks with adherence to specified dimensions and shapes and several rapid setting binders are other factors that have contributed to the development of thin bed technology. Although this technology is still emerging, especially for applications to earthquake prone regions, field applications are reported in Germany for over a few decades and in Italy since early 2000. The Australian concrete masonry industry has recently taken keen interest in pursuing research with a view to developing this technology. This paper presents the background information including review of literature and pilot studies that have been carried out to enable planning of the development of thin bed technology. The paper concludes with recommendations for future research.