878 resultados para Environmentally Responsive Design
Resumo:
Conventionally, design has played a compartmental role in the innovation process within most conservative companies around the world. Generally, companies have focused on the product design execution or the manufacturing and production arenas, and in some instances design is seen as merely a stylistic afterthought. Gradually, design is being regarded as a dynamic and central tactical business resource and consequently organisations globally look to design to help them innovate, differentiate and compete in a changing economic climate. Considering this, the question is raised; how can the specific knowledge and skills of designers be better articulated, understood, implemented and valued as a core component of strategic innovation in businesses? In seeking to answer this question, this paper proposes the new frontier of the design profession coined the ‘Design Innovation Catalyst’. This paper outlines the role of the new design professional and discusses the subsequent implications for design education. Furthermore, questions surrounding how designers will develop these new capabilities and how the design led innovation framework in application can contribute to the future of design will also be presented. It is anticipated that the findings from this research will help to better equip designers to enable them to play a more central role in business and strategic innovation now and in the future.
Resumo:
Research has long documented the value that design brings to the innovation of products and services. The research landscape has transformed in the last decade and now reflects the value of design as a different way thinking that can be applied to the innovation of business models and catalyst for strategic growth. This paper presents a case study of gathering deep customer insights through a design led innovation approach and reveals industry perspectives and attitudes towards the value of deep customer insights within the context of a leading Australian airport corporation. The findings highlight that the process of gathering deep customer insights encourages a design led approach to testing assumptions and developing stronger customer engagement. The richness of the deep customer insights also provided a bridge to future thought by provoking possible product, service and business innovations which aligned to the airport corporation’s vision. The implications of the study reveal how quantitative market data, which reveals broad sociocultural trends into ‘how’ and ‘what’ customers interact with within an airport, can be strongly validated and built upon through qualitative deep customer insights that explore ‘why’ those choices to interact are made. Future research is then presented which aims to widely disseminate a design led approach to innovation within internal stakeholders of the airport corporation through the development of a digital strategy.
Resumo:
This study aims to redefine spaces of learning to places of learning through the direct engagement of local communities as a way to examine and learn from real world issues in the city. This paper exemplifies Smart City Learning, where the key goal is to promote the generation and exchange of urban design ideas for the future development of South Bank, in Brisbane, Australia, informing the creation of new design policies responding to the needs of local citizens. Specific to this project was the implementation of urban informatics techniques and approaches to promote innovative engagement strategies. Architecture and Urban Design students were encouraged to review and appropriate real-time, ubiquitous technology, social media, and mobile devices that were used by urban residents to augment and mediate the physical and digital layers of urban infrastructures. Our study’s experience found that urban informatics provide an innovative opportunity to enrich students’ place of learning within the city.
Resumo:
Cell trajectory data is often reported in the experimental cell biology literature to distinguish between different types of cell migration. Unfortunately, there is no accepted protocol for designing or interpreting such experiments and this makes it difficult to quantitatively compare different published data sets and to understand how changes in experimental design influence our ability to interpret different experiments. Here, we use an individual based mathematical model to simulate the key features of a cell trajectory experiment. This shows that our ability to correctly interpret trajectory data is extremely sensitive to the geometry and timing of the experiment, the degree of motility bias and the number of experimental replicates. We show that cell trajectory experiments produce data that is most reliable when the experiment is performed in a quasi 1D geometry with a large number of identically{prepared experiments conducted over a relatively short time interval rather than few trajectories recorded over particularly long time intervals.
Resumo:
Understanding the effects of design interventions on the meanings people associate with landscapes is important to critical and ethical practice in landscape architecture. Case study research has become a common way researchers evaluate design interventions and related issues, with a standardised method promoted by the Landscape Architecture Foundation (LAF). However, the method is somewhat undeveloped for interpreting landscape meanings – something most commonly undertaken as historic landscape studies, but not as studies of design effect. This research proposes a new method for such interpretation, using a case study of Richard Haag’s radical 1971 proposal for a new kind of park on the site of the former Seattle gas works.
Resumo:
Cardiovascular diseases are a leading cause of death throughout the developed world. With the demand for donor hearts far exceeding the supply, a bridge-to-transplant or permanent solution is required. This is currently achieved with ventricular assist devices (VADs), which can be used to assist the left ventricle (LVAD), right ventricle (RVAD), or both ventricles simultaneously (BiVAD). Earlier generation VADs were large, volume-displacement devices designed for temporary support until a donor heart was found. The latest generation of VADs use rotary blood pump technology which improves device lifetime and the quality of life for end stage heart failure patients. VADs are connected to the heart and greater vessels of the patient through specially designed tubes called cannulae. The inflow cannulae, which supply blood to the VAD, are usually attached to the left atrium or ventricle for LVAD support, and the right atrium or ventricle for RVAD support. Few studies have characterized the haemodynamic difference between the two cannulation sites, particularly with respect to rotary RVAD support. Inflow cannulae are usually made of metal or a semi-rigid polymer to prevent collapse with negative pressures. However suction, and subsequent collapse, of the cannulated heart chamber can be a frequent occurrence, particularly with the relatively preload insensitive rotary blood pumps. Suction events may be associated with endocardial damage, pump flow stoppages and ventricular arrhythmias. While several VAD control strategies are under development, these usually rely on potentially inaccurate sensors or somewhat unreliable inferred data to estimate preload. Fixation of the inflow cannula is usually achieved through suturing the cannula, often via a felt sewing ring, to the cannulated chamber. This technique extends the time on cardiopulmonary bypass which is associated with several postoperative complications. The overall objective of this thesis was to improve the placement and design of rotary LVAD and RVAD inflow cannulae to achieve enhanced haemodynamic performance, reduced incidence of suction events, reduced levels of postoperative bleeding and a faster implantation procedure. Specific objectives were: * in-vitro evaluation of LVAD and RVAD inflow cannula placement, * design and in-vitro evaluation of a passive mechanism to reduce the potential for heart chamber suction, * design and in-vitro evaluation of a novel suture-less cannula fixation device. In order to complete in-vitro evaluation of VAD inflow cannulae, a mock circulation loop (MCL) was developed to accurately replicate the haemodynamics in the human systemic and pulmonary circulations. Validation of the MCL’s haemodynamic performance, including the form and magnitude of pressure, flow and volume traces was completed through comparisons of patient data and the literature. The MCL was capable of reproducing almost any healthy or pathological condition, and provided a useful tool to evaluate VAD cannulation and other cardiovascular devices. The MCL was used to evaluate inflow cannula placement for rotary VAD support. Left and right atrial and ventricular cannulation sites were evaluated under conditions of mild and severe heart failure. With a view to long term LVAD support in the severe left heart failure condition, left ventricular inflow cannulation was preferred due to improved LVAD efficiency and reduced potential for thrombus formation. In the mild left heart failure condition, left atrial cannulation was preferred to provide an improved platform for myocardial recovery. Similar trends were observed with RVAD support, however to a lesser degree due to a smaller difference in right atrial and ventricular pressures. A compliant inflow cannula to prevent suction events was then developed and evaluated in the MCL. As rotary LVAD or RVAD preload was reduced, suction events occurred in all instances with a rigid inflow cannula. Addition of the compliant segment eliminated suction events in all instances. This was due to passive restriction of the compliant segment as preload dropped, thus increasing the VAD circuit resistance and decreasing the VAD flow rate. Therefore, the compliant inflow cannula acted as a passive flow control / anti-suction system in LVAD and RVAD support. A novel suture-less inflow cannula fixation device was then developed to reduce implantation time and postoperative bleeding. The fixation device was evaluated for LVAD and RVAD support in cadaveric animal and human hearts attached to a MCL. LVAD inflow cannulation was achieved in under two minutes with the suture-less fixation device. No leakage through the suture-less fixation device – myocardial interface was noted. Continued development and in-vivo evaluation of this device may result in an improved inflow cannulation technique with the potential for off-bypass insertion. Continued development of this research, in particular the compliant inflow cannula and suture-less inflow cannulation device, will result in improved postoperative outcomes, life span and quality of life for end-stage heart failure patients.
Resumo:
The Design Science Research Roadmap (DSR-Roadmap) [1] aims to give detailed methodological guidance to novice researchers in Information Systems (IS) DSR. Focus group evaluation, one phase of the overall study, of the evolving DSR-Roadmap revealed that a key difficulty faced by both novice and expert researchers in DSR, is abstracting design theory from design. This paper explores the extension of the DSR-Roadmap by employing IS deep structure ontology (BWW [2-4]) as a lens on IS design to firstly yield generalisable design theory, specifically 'IS Design Theory' (ISDT) elements [5]. Consideration is next given to the value of BWW in the application of the design theory by practitioners. Results of mapping BWW constructs to ISDT elements suggest that the BWW is promising as a common language between design researchers and practitioners, facilitating both design theory and design implementation
Resumo:
Although Design Science Research (DSR) is now an accepted approach to research in the Information Systems (IS) discipline, consensus on the methodology of DSR has yet to be achieved. Lack of a comprehensive and detailed methodology for Design Science Research (DSR) in the Information System (IS) discipline is a main issue. Prior research (the parent-study) aimed to remedy this situation and resulted in the DSR-Roadmap (Alturki et al., 2011a). Continuing empirical validation and revision of the DSR-Roadmap strives towards a methodology with appropriate levels of detail, integration, and completeness for novice researchers to efficiently and effectively conduct and report DSR in IS. The sub-study reported herein contributes to this larger, ongoing effort. This paper reports results from a formative evaluation effort of the DSR-Roadmap conducted using focus group analysis. Generally, participants endorsed the utility and intuitiveness of the DSR-Roadmap, while also suggesting valuable refinements. Both parent-study and sub-study make methodological contributions. The parent-study is the first attempt of utilizing DSR to develop a research methodology showing an example of how to use DSR in research methodology construction. The sub-study demonstrates the value of the focus group method in DSR for formative product evaluation.