881 resultados para Cascade reservoirs system
Resumo:
Water to air methane emissions from freshwater reservoirs can be dominated by sediment bubbling (ebullitive) events. Previous work to quantify methane bubbling from a number of Australian sub-tropical reservoirs has shown that this can contribute as much as 95% of total emissions. These bubbling events are controlled by a variety of different factors including water depth, surface and internal waves, wind seiching, atmospheric pressure changes and water levels changes. Key to quantifying the magnitude of this emission pathway is estimating both the bubbling rate as well as the areal extent of bubbling. Both bubbling rate and areal extent are seldom constant and require persistent monitoring over extended time periods before true estimates can be generated. In this paper we present a novel system for persistent monitoring of both bubbling rate and areal extent using multiple robotic surface chambers and adaptive sampling (grazing) algorithms to automate the quantification process. Individual chambers are self-propelled and guided and communicate between each other without the need for supervised control. They can maintain station at a sampling site for a desired incubation period and continuously monitor, record and report fluxes during the incubation. To exploit the methane sensor detection capabilities, the chamber can be automatically lowered to decrease the head-space and increase concentration. The grazing algorithms assign a hierarchical order to chambers within a preselected zone. Chambers then converge on the individual recording the highest 15 minute bubbling rate. Individuals maintain a specified distance apart from each other during each sampling period before all individuals are then required to move to different locations based on a sampling algorithm (systematic or adaptive) exploiting prior measurements. This system has been field tested on a large-scale subtropical reservoir, Little Nerang Dam, and over monthly timescales. Using this technique, localised bubbling zones on the water storage were found to produce over 50,000 mg m-2 d-1 and the areal extent ranged from 1.8 to 7% of the total reservoir area. The drivers behind these changes as well as lessons learnt from the system implementation are presented. This system exploits relatively cheap materials, sensing and computing and can be applied to a wide variety of aquatic and terrestrial systems.
Resumo:
Available industrial energy meters offer high accuracy and reliability, but are typically expensive and low-bandwidth, making them poorly suited to multi-sensor data acquisition schemes and power quality analysis. An alternative measurement system is proposed in this paper that is highly modular, extensible and compact. To minimise cost, the device makes use of planar coreless PCB transformers to provide galvanic isolation for both power and data. Samples from multiple acquisition devices may be concentrated by a central processor before integration with existing host control systems. This paper focusses on the practical design and implementation of planar coreless PCB transformers to facilitate the module's isolated power, clock and data signal transfer. Calculations necessary to design coreless PCB transformers, and circuits designed for the transformer's practical application in the measurement module are presented. The designed transformer and each application circuit have been experimentally verified, with test data and conclusions made applicable to coreless PCB transformers in general.
Resumo:
Climate change and solar ultraviolet radiation may affect vaccine-preventable infectious diseases (VPID), the human immune response process and the immunization service delivery system. We systematically reviewed the scientific literature and identified 37 relevant publications. Our study shows that climate variability and ultraviolet radiation may potentially affect VPID and the immunization delivery system through modulating vector reproduction and vaccination effectiveness, possibly influencing human immune response systems to the vaccination, and disturbing immunization service delivery. Further research is needed to determine these affects on climate-sensitive VPID and on human immune response to common vaccines. Such research will facilitate the development and delivery of optimal vaccination programs for target populations, to meet the goal of disease control and elimination.
Resumo:
Nowadays, demand for automated Gas metal arc welding (GMAW) is growing and consequently need for intelligent systems is increased to ensure the accuracy of the procedure. To date, welding pool geometry has been the most used factor in quality assessment of intelligent welding systems. But, it has recently been found that Mahalanobis Distance (MD) not only can be used for this purpose but also is more efficient. In the present paper, Artificial Neural Networks (ANN) has been used for prediction of MD parameter. However, advantages and disadvantages of other methods have been discussed. The Levenberg–Marquardt algorithm was found to be the most effective algorithm for GMAW process. It is known that the number of neurons plays an important role in optimal network design. In this work, using trial and error method, it has been found that 30 is the optimal number of neurons. The model has been investigated with different number of layers in Multilayer Perceptron (MLP) architecture and has been shown that for the aim of this work the optimal result is obtained when using MLP with one layer. Robustness of the system has been evaluated by adding noise into the input data and studying the effect of the noise in prediction capability of the network. The experiments for this study were conducted in an automated GMAW setup that was integrated with data acquisition system and prepared in a laboratory for welding of steel plate with 12 mm in thickness. The accuracy of the network was evaluated by Root Mean Squared (RMS) error between the measured and the estimated values. The low error value (about 0.008) reflects the good accuracy of the model. Also the comparison of the predicted results by ANN and the test data set showed very good agreement that reveals the predictive power of the model. Therefore, the ANN model offered in here for GMA welding process can be used effectively for prediction goals.
Resumo:
In this paper we present for the first time a complete symbolic navigation system that performs goal-directed exploration to unfamiliar environments on a physical robot. We introduce a novel construct called the abstract map to link provided symbolic spatial information with observed symbolic information and actual places in the real world. Symbolic information is observed using a text recognition system that has been developed specifically for the application of reading door labels. In the study described in this paper, the robot was provided with a floor plan and a destination. The destination was specified by a room number, used both in the floor plan and on the door to the room. The robot autonomously navigated to the destination using its text recognition, abstract map, mapping, and path planning systems. The robot used the symbolic navigation system to determine an efficient path to the destination, and reached the goal in two different real-world environments. Simulation results show that the system reduces the time required to navigate to a goal when compared to random exploration.
Hand, foot and mouth disease in China: Evaluating an automated system for the detection of outbreaks
Resumo:
Objective To evaluate the performance of China’s infectious disease automated alert and response system in the detection of outbreaks of hand, foot and mouth (HFM) disease. Methods We estimated size, duration and delay in reporting HFM disease outbreaks from cases notified between 1 May 2008 and 30 April 2010 and between 1 May 2010 and 30 April 2012, before and after automatic alert and response included HFM disease. Sensitivity, specificity and timeliness of detection of aberrations in the incidence of HFM disease outbreaks were estimated by comparing automated detections to observations of public health staff. Findings The alert and response system recorded 106 005 aberrations in the incidence of HFM disease between 1 May 2010 and 30 April 2012 – a mean of 5.6 aberrations per 100 days in each county that reported HFM disease. The response system had a sensitivity of 92.7% and a specificity of 95.0%. The mean delay between the reporting of the first case of an outbreak and detection of that outbreak by the response system was 2.1 days. Between the first and second study periods, the mean size of an HFM disease outbreak decreased from 19.4 to 15.8 cases and the mean interval between the onset and initial reporting of such an outbreak to the public health emergency reporting system decreased from 10.0 to 9.1 days. Conclusion The automated alert and response system shows good sensitivity in the detection of HFM disease outbreaks and appears to be relatively rapid. Continued use of this system should allow more effective prevention and limitation of such outbreaks in China.
Resumo:
The present study deals with two dimensional, numerical simulation of railway track supporting system subjected to dynamic excitation force. Under plane strain condition, the coupled finite-infinite elements to represent the near and far field stress distribution and thin layer interface element was employed to model the interfacial behavior between sleepers and ballast. To account for the relative debonding, slipping and crushing that could take place in the contact area between the sleepers and ballast, modified Mohr-Coulomb criterion was adopted. Furthermore an attempt has been made to consider the elasto-plastic material non-linearity of the railway track supporting media by employing different constitutive models to represent steel, concrete and supporting materials. Based on the proposed physical and constitutive modeling a code has been developed for dynamic loads. The applicability of the developed F.E code has been demonstrated by analyzing a real railway supporting structure.
Resumo:
Utilities worldwide are focused on supplying peak electricity demand reliably and cost effectively, requiring a thorough understanding of all the factors influencing residential electricity use at peak times. An electricity demand reduction project based on comprehensive residential consumer engagement was established within an Australian community in 2008, and by 2011, peak demand had decreased to below pre-intervention levels. This paper applied field data discovered through qualitative in-depth interviews of 22 residential households at the community to a Bayesian Network complex system model to examine whether the system model could explain successful peak demand reduction in the case study location. The knowledge and understanding acquired through insights into the major influential factors and the potential impact of changes to these factors on peak demand would underpin demand reduction intervention strategies for a wider target group.
Resumo:
The present contribution deals with the numerical modelling of railway track-supporting systems-using coupled finite-infinite elements-to represent the near and distant field stress distribution, and also employing a thin layer interface element to account for the interfacial behaviour between sleepers and ballast. To simulate the relative debonding, slipping and crushing at the contact area between sleepers and ballast, a modified Mohr-Coulomb criterion was adopted. Further more an attempt was made to consider the elasto plastic materials’ non-linearity of the railway track supporting media by employing different constitutive models to represent steel, concrete and other supporting materials. It is seen that during an incremental-iterative mode of load application, the yielding initially started from the edge of the sleepers and then flowed vertically downwards and spread towards the centre of the railway supporting system.