999 resultados para Multitraits analysis
Resumo:
BACKGROUND: Hallux valgus (HV) is a foot deformity commonly seen in medical practice, often accompanied by significant functional disability and foot pain. Despite frequent mention in a diverse body of literature, a precise estimate of the prevalence of HV is difficult to ascertain. The purpose of this systematic review was to investigate prevalence of HV in the overall population and evaluate the influence of age and gender. METHODS: Electronic databases (Medline, Embase, and CINAHL) and reference lists of included papers were searched to June 2009 for papers on HV prevalence without language restriction. MeSH terms and keywords were used relating to HV or bunions, prevalence and various synonyms. Included studies were surveys reporting original data for prevalence of HV or bunions in healthy populations of any age group. Surveys reporting prevalence data grouped with other foot deformities and in specific disease groups (e.g. rheumatoid arthritis, diabetes) were excluded. Two independent investigators quality rated all included papers on the Epidemiological Appraisal Instrument. Data on raw prevalence, population studied and methodology were extracted. Prevalence proportions and the standard error were calculated, and meta-analysis was performed using a random effects model. RESULTS: A total of 78 papers reporting results of 76 surveys (total 496,957 participants) were included and grouped by study population for meta-analysis. Pooled prevalence estimates for HV were 23% in adults aged 18-65 years (CI: 16.3 to 29.6) and 35.7% in elderly people aged over 65 years (CI: 29.5 to 42.0). Prevalence increased with age and was higher in females [30% (CI: 22 to 38)] compared to males [13% (CI: 9 to 17)]. Potential sources of bias were sampling method, study quality and method of HV diagnosis. CONCLUSIONS: Notwithstanding the wide variation in estimates, it is evident that HV is prevalent; more so in females and with increasing age. Methodological quality issues need to be addressed in interpreting reports in the literature and in future research.
Resumo:
Soil organic carbon sequestration rates over 20 years based on the Intergovernmental Panel for Climate Change (IPCC) methodology were combined with local economic data to determine the potential for soil C sequestration in wheat-based production systems on the Indo-Gangetic Plain (IGP). The C sequestration potential of rice–wheat systems of India on conversion to no-tillage is estimated to be 44.1 Mt C over 20 years. Implementing no-tillage practices in maize–wheat and cotton–wheat production systems would yield an additional 6.6 Mt C. This offset is equivalent to 9.6% of India's annual greenhouse gas emissions (519 Mt C) from all sectors (excluding land use change and forestry), or less than one percent per annum. The economic analysis was summarized as carbon supply curves expressing the total additional C accumulated over 20 year for a price per tonne of carbon sequestered ranging from zero to USD 200. At a carbon price of USD 25 Mg C−1, 3 Mt C (7% of the soil C sequestration potential) could be sequestered over 20 years through the implementation of no-till cropping practices in rice–wheat systems of the Indian States of the IGP, increasing to 7.3 Mt C (17% of the soil C sequestration potential) at USD 50 Mg C−1. Maximum levels of sequestration could be attained with carbon prices approaching USD 200 Mg C−1 for the States of Bihar and Punjab. At this carbon price, a total of 34.7 Mt C (79% of the estimated C sequestration potential) could be sequestered over 20 years across the rice–wheat region of India, with Uttar Pradesh contributing 13.9 Mt C.
Resumo:
Baseline monitoring of groundwater quality aims to characterize the ambient condition of the resource and identify spatial or temporal trends. Sites comprising any baseline monitoring network must be selected to provide a representative perspective of groundwater quality across the aquifer(s) of interest. Hierarchical cluster analysis (HCA) has been used as a means of assessing the representativeness of a groundwater quality monitoring network, using example datasets from New Zealand. HCA allows New Zealand's national and regional monitoring networks to be compared in terms of the number of water-quality categories identified in each network, the hydrochemistry at the centroids of these water-quality categories, the proportions of monitoring sites assigned to each water-quality category, and the range of concentrations for each analyte within each water-quality category. Through the HCA approach, the National Groundwater Monitoring Programme (117 sites) is shown to provide a highly representative perspective of groundwater quality across New Zealand, relative to the amalgamated regional monitoring networks operated by 15 different regional authorities (680 sites have sufficient data for inclusion in HCA). This methodology can be applied to evaluate the representativeness of any subset of monitoring sites taken from a larger network.
Resumo:
Many physical processes exhibit fractional order behavior that varies with time or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. In this paper, we consider the time variable fractional order mobile-immobile advection-dispersion model. Numerical methods and analyses of stability and convergence for the fractional partial differential equations are quite limited and difficult to derive. This motivates us to develop efficient numerical methods as well as stability and convergence of the implicit numerical methods for the fractional order mobile immobile advection-dispersion model. In the paper, we use the Coimbra variable time fractional derivative which is more efficient from the numerical standpoint and is preferable for modeling dynamical systems. An implicit Euler approximation for the equation is proposed and then the stability of the approximation are investigated. As for the convergence of the numerical scheme we only consider a special case, i.e. the time fractional derivative is independent of time variable t. The case where the time fractional derivative depends both the time variable t and the space variable x will be considered in the future work. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.
Resumo:
In this paper, a class of fractional advection–dispersion models (FADMs) is considered. These models include five fractional advection–dispersion models, i.e., the time FADM, the mobile/immobile time FADM with a time Caputo fractional derivative 0 < γ < 1, the space FADM with two sides Riemann–Liouville derivatives, the time–space FADM and the time fractional advection–diffusion-wave model with damping with index 1 < γ < 2. These equations can be used to simulate the regional-scale anomalous dispersion with heavy tails. We propose computationally effective implicit numerical methods for these FADMs. The stability and convergence of the implicit numerical methods are analysed and compared systematically. Finally, some results are given to demonstrate the effectiveness of theoretical analysis.
Resumo:
This paper presents a solution to the problem of estimating the monotonous tendency of a slow-varying oscillating system. A recursive Prony Analysis (PA) scheme is developed which involves obtaining a dynamic model with parameters identified by implementing the forgetting factor recursive least square (FFRLS) method. A box threshold principle is proposed to separate the dominant components, which results in an accurate estimation of the trend of oscillating systems. Performance of the proposed PA is evaluated using real-time measurements when random noise and vibration effects are present. Moreover, the proposed method is used to estimate monotonous tendency of deck displacement to assist in a safe landing of an unmanned aerial vehicle (UAV). It is shown that the proposed method can estimate instantaneous mean deck satisfactorily, making it well suited for integration into ship-UAV approach and landing guidance systems.
Resumo:
Data mining techniques extract repeated and useful patterns from a large data set that in turn are utilized to predict the outcome of future events. The main purpose of the research presented in this paper is to investigate data mining strategies and develop an efficient framework for multi-attribute project information analysis to predict the performance of construction projects. The research team first reviewed existing data mining algorithms, applied them to systematically analyze a large project data set collected by the survey, and finally proposed a data-mining-based decision support framework for project performance prediction. To evaluate the potential of the framework, a case study was conducted using data collected from 139 capital projects and analyzed the relationship between use of information technology and project cost performance. The study results showed that the proposed framework has potential to promote fast, easy to use, interpretable, and accurate project data analysis.
Resumo:
BACKGROUND: The efficacy of nutritional support in the management of malnutrition in chronic obstructive pulmonary disease (COPD) is controversial. Previous meta-analyses, based on only cross-sectional analysis at the end of intervention trials, found no evidence of improved outcomes. OBJECTIVE: The objective was to conduct a meta-analysis of randomized controlled trials (RCTs) to clarify the efficacy of nutritional support in improving intake, anthropometric measures, and grip strength in stable COPD. DESIGN: Literature databases were searched to identify RCTs comparing nutritional support with controls in stable COPD. RESULTS: Thirteen RCTs (n = 439) of nutritional support [dietary advice (1 RCT), oral nutritional supplements (ONS; 11 RCTs), and enteral tube feeding (1 RCT)] with a control comparison were identified. An analysis of the changes induced by nutritional support and those obtained only at the end of the intervention showed significantly greater increases in mean total protein and energy intakes with nutritional support of 14.8 g and 236 kcal daily. Meta-analyses also showed greater mean (±SE) improvements in favor of nutritional support for body weight (1.94 ± 0.26 kg, P < 0.001; 11 studies, n = 308) and grip strength (5.3%, P < 0.050; 4 studies, n = 156), which was not shown by ANOVA at the end of the intervention, largely because of bias associated with baseline imbalance between groups. CONCLUSION: This systematic review and meta-analysis showed that nutritional support, mainly in the form of ONS, improves total intake, anthropometric measures, and grip strength in COPD. These results contrast with the results of previous analyses that were based on only cross-sectional measures at the end of intervention trials.
Resumo:
The finite element (FE) analysis is an effective method to study the strength and predict the fracture risk of endodontically-treated teeth. This paper presents a rapid method developed to generate a comprehensive tooth FE model using data retrieved from micro-computed tomography (μCT). With this method, the inhomogeneity of material properties of teeth was included into the model without dividing the tooth model into different regions. The material properties of the tooth were assumed to be related to the mineral density. The fracture risk at different tooth portions was assessed for root canal treatments. The micro-CT images of a tooth were processed by a Matlab software programme and the CT numbers were retrieved. The tooth contours were obtained with thresholding segmentation using Amira. The inner and outer surfaces of the tooth were imported into Solidworks and a three-dimensional (3D) tooth model was constructed. An assembly of the tooth model with the periodontal ligament (PDL) layer and surrounding bone was imported into ABAQUS. The material properties of the tooth were calculated from the retrieved CT numbers via ABAQUS user's subroutines. Three root canal geometries (original and two enlargements) were investigated. The proposed method in this study can generate detailed 3D finite element models of a tooth with different root canal enlargements and filling materials, and would be very useful for the assessment of the fracture risk at different tooth portions after root canal treatments.
Resumo:
Purpose – In the context of global knowledge economy, knowledge-based urban development (KBUD) is seen as an effective development strategy for city-regions to survive, flourish and become highly competitive urban agglomerations – i.e., a knowledge city-region. This paper aims to evaluate the KBUD dynamics, capacity and potentials of a rapidly emerging knowledge city-region of Finland – Tampere region. Design/methodology/approach – The paper undertakes a review of the literature on regional development in the knowledge economy era. It adopts a qualitative analysis technique to scrutinize the dynamics, capacity and potentials of Tampere region. The semi-structured interview process starts with the pre-determined key actors of the city-region with an aim of determining the other key players. Next, with the participation of all key players to the interviews, the research reveals the principal issues, assets and mechanisms that relate to KBUD, and portrays the strengths, weaknesses, opportunities and threats of the city-region. A critical analysis of the findings along with the previous studies is undertaken to provide a clear picture of the dynamics, capacity and potentials of the emerging knowledge city-region. Originality/value – This paper reports the findings of a pioneering study focusing on the investigation of the KBUD dynamics, capacity and potentials of Tampere region. The paper critically evaluates the city-region from the knowledge perspective with the lens of KBUD, and the lessons learned and the methodological approach of the paper shed light to other city-regions seeking such development. Practical implications – The paper discusses the findings of a study from Tampere region that critically scrutinizes the KBUD experience of the city-region. The research provides an invaluable opportunity to inform the regional decision-, policy- and plan-making mechanisms by determining key issues, actors, assets, processes and potential development directions for the KBUD of Tampere region.
Resumo:
In this paper, a three-dimensional nonlinear rigid body model has been developed for the investigation of the crashworthiness of a passenger train using the multibody dynamics approach. This model refers to a typical design of passenger cars and train constructs commonly used in Australia. The high-energy and low-energy crush zones of the cars and the train constructs are assumed and the data are explicitly provided in the paper. The crash scenario is limited to the train colliding on to a fixed barrier symmetrically. The simulations of a single car show that this initial design is only applicable for the crash speed of 35 km/h or lower. For higher speeds (e.g. 140 km/h), the crush lengths or crush forces or both the crush zone elements will have to be enlarged. It is generally better to increase the crush length than the crush force in order to retain the low levels of the longitudinal deceleration of the passenger cars.