822 resultados para Universal Design
Resumo:
Cold-formed steel lipped channels are commonly used in LSF wall construction as load bearing studs with plasterboards on both sides. Under fire conditions, cold-formed thin-walled steel sections heat up quickly resulting in fast reduction in their strength and stiffness. Usually the LSF wall panels are subjected to fire from one side which will cause thermal bowing, neutral axis shift and magnification effects due to the development of non-uniform temperature distributions across the stud. This will induce an additional bending moment in the stud and hence the studs in LSF wall panels should be designed as a beam column considering both the applied axial compression load and the additional bending moment. Traditionally the fire resistance rating of these wall panels is based on approximate prescriptive methods. Very often they are limited to standard wall configurations used by the industry. Therefore a detailed research study is needed to develop fire design rules to predict the failure load and hence the failure time of LSF wall panels subject to non-uniform temperature distributions. This paper presents the details of an investigation to develop suitable fire design rules for LSF wall studs under non-uniform elevated temperature distributions. Applications of the previously developed fire design rules based on AISI design manual and Eurocode 3 Parts 1.2 and 1.3 to LSF wall studs were investigated in detail and new simplified fire design rules based on AS/NZS 4600 and Eurocode 3 Part 1.3 were proposed in the current study with suitable allowances for the interaction effects of compression and bending actions. The accuracy of the proposed fire design rules was verified by using the results from full scale fire tests and extensive numerical studies.
Resumo:
Light gauge steel frame wall systems are commonly used in industrial and commercial buildings, and there is a need for simple fire design rules to predict their load capacities and fire resistance ratings. During fire events, the light gauge steel frame wall studs are subjected to non-uniform temperature distributions that cause thermal bowing, neutral axis shift and magnification effects and thus resulting in a combined axial compression and bending action on the studs. In this research, a series of full-scale fire tests was conducted first to evaluate the performance of light gauge steel frame wall systems with eight different wall configurations under standard fire conditions. Finite element models of light gauge steel frame walls were then developed, analysed under transient and steady-state conditions and validated using full-scale fire tests. Using the results from fire tests and finite element analyses, a detailed investigation was undertaken into the prediction of axial compression strength and failure times of light gauge steel frame wall studs in standard fires using the available fire design rules based on Australian, American and European standards. The results from both fire tests and finite element analyses were used to investigate the ability of these fire design rules to include the complex effects of non-uniform temperature distributions and their accuracy in predicting the axial compression strength of wall studs and the failure times. Suitable modifications were then proposed to the fire design rules. This article presents the details of this investigation on the fire design rules of light gauge steel frame walls and the results.
Resumo:
Traditionally the fire resistance rating of LSF wall systems is based on approximate prescriptive methods developed using limited fire tests. Therefore a detailed research study into the performance of load bearing LSF wall systems under standard fire conditions was undertaken to develop improved fire design rules. It used the extensive fire performance results of eight different LSF wall systems from a series of full scale fire tests and numerical studies for this purpose. The use of previous fire design rules developed for LSF walls subjected to non-uniform elevated temperature distributions based on AISI design manual and Eurocode3 Parts 1.2 and 1.3 was investigated first. New simplified fire design rules based on AS/NZS 4600, North American Specification and Eurocode 3 Part 1.3 were then proposed in this study with suitable allowances for the interaction effects of compression and bending actions. The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the new design rules to predict the failure load ratio versus time and temperature curves for varying LSF wall configurations. The accuracy of the proposed design rules was verified using the test and FEA results for different wall configurations, steel grades, thicknesses and load ratios. This paper presents the details and results of this study including the improved fire design rules for predicting the load capacity of LSF wall studs and the failure times of LSF walls under standard fire conditions.
Resumo:
Recent fire research into the behaviour of light gauge steel frame (LSF) wall systems has devel-oped fire design rules based on Australian and European cold-formed steel design standards, AS/NZS 4600 and Eurocode 3 Part 1.3. However, these design rules are complex since the LSF wall studs are subjected to non-uniform elevated temperature distributions when the walls are exposed to fire from one side. Therefore this paper proposes an alternative design method for routine predictions of fire resistance rating of LSF walls. In this method, suitable equations are recommended first to predict the idealised stud time-temperature pro-files of eight different LSF wall configurations subject to standard fire conditions based on full scale fire test results. A new set of equations was then proposed to find the critical hot flange (failure) temperature for a giv-en load ratio for the same LSF wall configurations with varying steel grades and thickness. These equations were developed based on detailed finite element analyses that predicted the axial compression capacities and failure times of LSF wall studs subject to non-uniform temperature distributions with varying steel grades and thicknesses. This paper proposes a simple design method in which the two sets of equations developed for time-temperature profiles and critical hot flange temperatures are used to find the failure times of LSF walls. The proposed method was verified by comparing its predictions with the results from full scale fire tests and finite element analyses. This paper presents the details of this study including the finite element models of LSF wall studs, the results from relevant fire tests and finite element analyses, and the proposed equations.
Resumo:
Current design rules for determining the member strength of cold-formed steel columns are based on the effective length of the member and a single column capacity curve for both pin-ended and fixed-ended columns. This research has reviewed the use of AS/NZS 4600 design rules for their accuracy in determining the member compression capacities of slender cold-formed steel columns using detailed numerical studies. It has shown that AS/NZS 4600 design rules accurately predicted the capacities of pinned and fixed ended columns undergoing flexural buckling. However, for fixed ended columns undergoing flexural-torsional buckling, it was found that current AS/NZS 4600 design rules did not include the beneficial effect of warping fixity. Therefore AS/NZS 4600 design rules were found to be excessively conservative and hence uneconomical in predicting the failure loads obtained from tests and finite element analyses of fixed-ended lipped channel columns. Based on this finding, suitable recommendations have been made to modify the current AS/NZS 4600 design rules to more accurately reflect the results obtained from the numerical and experimental studies conducted in this research. This paper presents the details of this research on cold-formed steel columns and the results.
Resumo:
This paper has presented the details of an investigation into the flexural and flexuraltorsional buckling behaviour of cold-formed structural steel columns with pinned and fixed ends. Current design rules for the member capacities of cold-formed steel columns are based on the same non-dimensional strength curve for both fixed and pinned-ended columns. This research has reviewed the accuracy of the current design rules in AS/NZS 4600 and the North American Specification in determining the member capacities of cold-formed steel columns using the results from detailed finite element analyses and an experimental study of lipped channel columns. It was found that the current Australian and American design rules accurately predicted the member capacities of pin ended lipped channel columns undergoing flexural and flexural torsional buckling. However, for fixed ended columns with warping fixity undergoing flexural-torsional buckling, it was found that the current design rules significantly underestimated the column capacities as they disregard the beneficial effect of warping fixity. This paper has therefore proposed improved design rules and verified their accuracy using finite element analysis and test results of cold-formed lipped channel columns made of three cross-sections and five different steel grades and thicknesses.
Resumo:
Deterministic computer simulations of physical experiments are now common techniques in science and engineering. Often, physical experiments are too time consuming, expensive or impossible to conduct. Complex computer models or codes, rather than physical experiments lead to the study of computer experiments, which are used to investigate many scientific phenomena of this nature. A computer experiment consists of a number of runs of the computer code with different input choices. The Design and Analysis of Computer Experiments is a rapidly growing technique in statistical experimental design. This thesis investigates some practical issues in the design and analysis of computer experiments and attempts to answer some of the questions faced by experimenters using computer experiments. In particular, the question of the number of computer experiments and how they should be augmented is studied and attention is given to when the response is a function over time.
Resumo:
We argue that there are at least two significant issues for interaction designers to consider when creating the next generation of human interfaces for civic and urban engagement: (1) The disconnect between citizens participating in either digital or physical realms has resulted in a neglect of the hybrid role that public place and situated technology can play in contributing to civic innovation. (2) Under the veneer of many social media tools, hardly any meaningful strategies or approaches are found that go beyond awareness raising and allow citizens to do more than clicking a ‘Like’ button. We call for an agenda to design the next generation of ‘digital soapboxes’ that contributes towards a new form of polity helping citizens not only to have a voice but also to appropriate their city in order to take action for change.
Resumo:
Australia's mass market fashion labels have traditionally benefitted from their peripheral location to the world's fashion centres. Operating a season behind, Australian mass market designers and buyers were well-placed to watch trends play out overseas before testing them in the Australian marketplace. For this reason, often a designer's role was to source and oversee the manufacture of 'knock-offs', or close copies of northern hemisphere mass market garments. Both Weller and Walsh have commented on this practice.12 The knock-on effect from this continues to be a cautious, derivative fashion sensibility within Australian mass market fashion design, where any new trend or product is first tested and proved overseas months earlier. However, there is evidence that this is changing. The rapid online dissemination of global fashion trends, coupled with the Australian consumer’s willingness to shop online, has meant that the ‘knock-off’ is less viable. For this reason, a number of mass market companies are moving away from the practice of direct sourcing and are developing product in-house under a northern hemisphere model. This shift is also witnessed in the trend for mass market companies to develop collections in partnership with independent Australian designers. This paper explores the current and potential effects of these shifts within Australian mass market design practice, and discusses how they may impact on both consumers and on the wider culture of Australian fashion.
Resumo:
This paper presents the fashion course at QUT, Creative Industries
Resumo:
Cold-formed steel Lipped Channel Beams (LCB) with web openings are commonly used as floor joists and bearers in building structures. The shear behaviour of these beams is more complicated and their shear capacities are considerably reduced by the presence of web openings. However, limited research has been undertaken on the shear behaviour and strength of LCBs with web openings. Hence a detailed numerical study was undertaken to investigate the shear behaviour and strength of LCBs with web openings. Finite element models of simply supported LCBs under a mid-span load with aspect ratios of 1.0 and 1.5 were developed and validated by comparing their results with test results. They were then used in a detailed parametric study to investigate the effects of various influential parameters. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative. Improved design equations were therefore proposed for the shear strength of LCBs with web openings based on both experimental and numerical results. This paper presents the details of finite element modelling of LCBs with web openings, validation of finite element models, and the development of improved shear design rules. The proposed shear design rules in this paper can be considered for inclusion in the future versions of cold-formed steel design codes.
Resumo:
This research studies information systems that adapt to the context in which they are used and provides recommendations on how the design of such systems can be improved. This thesis covers the problem of context-awareness via two case studies in the insurance and transportation industries. The study highlights shortcomings in the understanding of the relationship between information systems and context. Furthermore, it presents a new, theory-informed approach to design, and provides guidance for system developers seeking to implement context-aware information systems.
Resumo:
Overview: - Development of mixed methods research - Benefits and challenges of “mixing” - Different models - Good design - Two examples - How to report? - Have a go!
Resumo:
This paper presents work in progress of EatChaFood – a prototype app designed to increase user knowledge of the currently available domestic supply and location of food, with a view to reducing expired household food waste. In order to reap the benefits that EatChaFood can provide we explore ways to overcome manual data entry as a barrier to use. Our user study has to recognise the limitations of the prototype app, and conduct an evaluation of the interaction design built into the app to promote behaviour change. Innovations in the near future such as the automatic scanning of barcodes on food items or photo-recognition will close the gap between perceived prototype usability and usefulness.
Resumo:
The design-build (DB) delivery system is an effective means of delivering a green construction project and selecting an appropriate contractor is critical to project success. Moreover, the delivery of green buildings requires specific design, construction and operation and maintenance considerations not generally encountered in the procurement of conventional buildings. Specifying clear sustainability requirements to potential contractors is particularly important in achieving sustainable project goals. However, many client/owners either do not explicitly specify sustainability requirements or do so in a prescriptive manner during the project procurement process. This paper investigates the current state-of-the-art procurement process used in specifying the sustainability requirements of the public sector in the USA construction market by means of a robust content analysis of 40 design-build requests for proposals (RFPs). The results of the content analysis indicate that the sustainability requirement is one of the most important dimensions in the best-value evaluation of DB contractors. Client/owners predominantly specify the LEED certification levels (e.g. LEED Certified, Silver, Gold, and Platinum) for a particular facility, and include the sustainability requirements as selection criteria (with specific importance weightings) for contractor evolution. Additionally, larger size projects tend to allocate higher importance weightings to sustainability requirements.This study provides public DB client/owners with a number of practical implications for selecting appropriate design-builders for sustainable DB projects.