813 resultados para Road surface
Resumo:
There is now a widespread recognition of the importance of mental imagery in a range of clinical disorders (1). This provides the potential for a transdiagnostic route to integrate some aspects of these disorders and their treatment within a common framework. This opinion piece argues that we need to understand why imagery is such a central and recurring feature, if we are to progress theories of the origin and maintenance of disorders. This will aid us in identifying therapeutic techniques that are not simply targeting imagery as a symptom, but as a manifestation of an underlying problem. As papers in this issue highlight, imagery is a central feature across many clinical disorders, but has been ascribed varying roles. For example, the involuntary occurrence of traumatic memories is a diagnostic criterion for PTSD (2), and it has been suggested that multisensory imagery of traumatic events normally serves a functional role in allowing the individual to reappraise the situation (3), but that this re-appraisal is disabled by extreme affective responses. In contrast to the disabling flashbacks associated with PTSD, depressed adults who experience suicidal ideation often report “flash forward” imagery related to suicidal acts (4), motivating them to self-harm. Socially anxious individuals who engage in visual imagery about giving a talk in public become more anxious and make more negative predictions about future performance than others who engage in more abstract, semantic processing of the past event (5). People with Obsessive Compulsive Disorder (OCD) frequently report imagery of past adverse events, and imagery seems to be associated with severity (6). The content of intrusive imagery has been related to psychotic symptoms (7), including visual images of the catastrophic fears associated with paranoia and persecution. Imagery has been argued (8) to play a role in the maintenance of psychosis through negative appraisals of imagined voices, misattribution of sensations to external sources, by the induction of negative mood states that trigger voices, and through maintenance of negative schemas. In addiction and substance dependence, Elaborated Intrusion (EI) Theory (9, 10) emphasizes the causal role that imagery plays in substance use, through its role in motivating an individual to pursue goals directed toward achieving the pleasurable outcomes associated with substance use...
Resumo:
THE DRINKING DRIVER is a guide for listeners to the Adult Education radio series ONE FOR THE ROAD, a five-part series on drink-driving and Australia’s road toll. ONE FOR THE ROAD was produced by Lee Parker and Julie Levi, with assistance from the Federal Office of Road Safety in Canberra. The five programs, presented by Lee Parker were first broadcast on ABC Radio National in January 1989, and repeated on Radio National and Regional Stations across Australia in April/May 1989. THE DRINKING DRIVER was written by Mark King, Senior Project Officer with the Road Safety Division of the South Australian Department of Transport.
Resumo:
When an older driver has a crash with tragic consequences, there are calls for stricter licensing controls to detect “unfit” drivers and take their licences away, typically focusing on those aged 75 or over. When the crash records for older drivers are compared across jurisdictions, however, there is no observable impact of any restrictions. This includes compulsory re-testing, which is strongly advocated by the public but is not supported by the research.
Resumo:
Strategies that confine antibacterial and/or antifouling property to the surface of the implant, by modifying the surface chemistry and morphology or by encapsulating the material in an antibiotic-loaded coating, are most promising as they do not alter bulk integrity of the material. Among them, plasma-assisted modification and catechol chemistry stand out for their ability to modify a wide range of substrates. By controlling processing parameters, plasma environment can be used for surface nano structuring, chemical activation, and deposition of biologically active and passive coatings. Catechol chemistry can be used for material-independent, highly-controlled surface immobilisation of active molecules and fabrication of biodegradable drug-loaded hydrogel coatings. In this article, we comprehensively review the role plasma-assisted processing and catechol chemistry can play in combating bacterial colonisation on medically relevant coatings, and how these strategies can be coupled with the use of natural antimicrobial agents to produce synthetic antibiotic-free antibacterial surfaces.
Resumo:
Radio frequency (R.F.) glow discharge polyterpenol thin films were prepared on silicon wafers and irradiated with I10+ ions to fluences of 1 × 1010 and 1 × 1012 ions/cm2. Post-irradiation characterisation of these films indicated the development of well-defined nano-scale ion entry tracks, highlighting prospective applications for ion irradiated polyterpenol thin films in a variety of membrane and nanotube-fabrication functions. Optical characterisation showed the films to be optically transparent within the visible spectrum and revealed an ability to selectively control the thin film refractive index as a function of fluence. This indicates that ion irradiation processing may be employed to produce plasma-polymer waveguides to accommodate a variety of wavelengths. XRR probing of the substrate-thin film interface revealed interfacial roughness values comparable to those obtained for the uncoated substrate's surface (i.e., both on the order of 5 Å), indicating minimal substrate etching during the plasma deposition process.
Resumo:
Low pressure radio frequency plasma-assisted deposition of 1-isopropyl-4-methyl-1,4-cyclohexadiene thin films was investigated for different polymerization conditions. Transparent, environmentally stable and flexible, these organic films are promising candidates for organic photovoltaics (OPV) and flexible electronics applications, where they can be used as encapsulating coatings and insulating interlayers. The effect of deposition RF power on optical properties of the films was limited, with all films being optically transparent, with refractive indices in a range of 1.57–1.58 at 500 nm. The optical band gap (Eg) of ~3 eV fell into the insulating Eg region, decreasing for films fabricated at higher RF power. Independent of deposition conditions, the surfaces were smooth and defect-free, with uniformly distributed morphological features and average roughness between 0.30 nm (at 10 W) and 0.21 nm (at 75 W). Films fabricated at higher deposition power displayed enhanced resistance to delamination and wear, and improved hardness, from 0.40 GPa for 10 W to 0.58 GPa for 75 W at a load of 700 μN. From an application perspective, it is therefore possible to tune the mechanical and morphological properties of these films without compromising their optical transparency or insulating property.
Resumo:
Organic thin films have myriad of applications in biological interfaces, micro-electromechanical systems and organic electronics. Polyterpenol thin films fabricated via RF plasma polymerization have been substantiated as a promising gate insulating and encapsulating layer for organic optoelectronics, sacrificial place-holders for air gap fabrication as well as antibacterial coatings for medical implants. This study aims to understand the wettability and solubility behavior of the nonsynthetic polymer thin film, polyterpenol. Polyterpenol exhibited monopolar behavior, manifesting mostly electron donor properties, and was not water soluble due to the extensive intermolecular and intramolecular hydrogen bonds present. Hydrophobicity of polyterpenol surfaces increased for films fabricated at higher RF power attributed to reduction in oxygen containing functional groups and increased cross linking. The studies carried out under various deposition conditions vindicate that we could tailor the properties of the polyterpenol thin film for a given application.
Resumo:
Biomaterials play a fundamental role in disease management and the improvement of health care. In recent years, there has been a significant growth in the diversity, function, and number of biomaterials used worldwide. Yet, attachment of pathogenic microorganisms onto biomaterial surfaces remains a significant challenge that substantially undermines their clinical applicability, limiting the advancement of these systems. The emergence and escalating pervasiveness of antibiotic-resistant bacterial strains makes the management of biomaterial-associated nosocomial infections increasingly difficult. The conventional post-operative treatment of implant-caused infections using systemic antibiotics is often marginally effective, further accelerating the extent of antimicrobial resistance. Methods by which the initial stages of bacterial attachment and biofilm formation can be restricted or prevented are therefore sought. The surface modification of biomaterials has the potential to alleviate pathogenic biofouling, therefore preventing the need for conventional antibiotics to be applied.
Resumo:
Whereas the employment of nanotechnology in electronics and optics engineering is relatively well established, the use of nanostructured materials in medicine and biology is undoubtedly novel. Certain nanoscale surface phenomena are being exploited to promote or prevent the attachment of living cells. However, as yet, it has not been possible to develop methods that completely prevent cells from attaching to solid surfaces, since the mechanisms by which living cells interact with the nanoscale surface characteristics of these substrates are still poorly understood. Recently, novel and advanced surface characterisation techniques have been developed that allow the precise molecular and atomic scale characterisation of both living cells and the solid surfaces to which they attach. Given this additional capability, it may now be possible to define boundaries, or minimum dimensions, at which a surface feature can exert influence over an attaching living organism.This review explores the current research on the interaction of living cells with both native and nanostructured surfaces, and the role that these surface properties play in the different stages of cell attachment.
Resumo:
Despite many synthetic biomaterials having physical properties that are comparable or even superior to those of natural body tissues, they frequently fail due to the adverse physiological reactions they cause within the human body, such as infection and inflammation. The surface modification of biomaterials is an economical and effective method by which biocompatibility and biofunctionality can be achieved while preserving the favorable bulk characteristics of the biomaterial, such as strength and inertness. Amongst the numerous surface modification techniques available, plasma surface modification affords device manufacturers a flexible and environmentally friendly process that enables tailoring of the surface morphology, structure, composition, and properties of the material to a specific need. There are a vast range of possible applications of plasma modification in biomaterial applications, however, the focus of this review paper is on processes that can be used to develop surface morphologies and chemical structures for the prevention of adhesion and proliferation of pathogenic bacteria on the surfaces of in-dwelling medical devices. As such, the fundamental principles of bacterial cell attachment and biofilm formation are also discussed. Functional organic plasma polymerised coatings are also discussed for their potential as biosensitive interfaces, connecting inorganic/metallic electronic devices with their physiological environments.
Resumo:
This study presents the effect of iodine doping on optical and surface properties of polyterpenol thin films deposited from non-synthetic precursor by means of plasma polymerisation. Spectroscopic ellipsometry studies showed iodine doping reduced the optical band gap from 2.82 eV to 1.50 eV for pristine and doped samples respectively. Higher levels of doping notably reduced the transparency of films, an issue if material is considered for applications that require high transparency. Contact angle studies demonstrated higher hydrophilicity for films deposited at increased doping levels, results confirmed by XPS Spectroscopy and FTIR. Doping had no significant effect on the surface profile or roughness of the film.
Resumo:
Amongst various methods to attain sound antibacterial and antifouling properties, surface modification of biomaterials combines efficiency, processing flexibility, and most importantly, the ability to preserve favourable bulk properties, such as mechanical strength and chemical inertness. This chapter will first briefly discuss key parameters by which the biomaterial surface can be described, namely surface chemistry and morphology, and their individual and combined contributions to cell-surface interactions. More emphasis will be placed on surface morphology as the area of much debate. The chapter will then describe a range of available methodologies for surface modification, with plasma-assisted modification as one of the foci.
Resumo:
Inspired by high porosity, absorbency, wettability and hierarchical ordering on the micrometer and nanometer scale of cotton fabrics, a facile strategy is developed to coat visible light active metal nanostructures of copper and silver on cotton fabric substrates. The fabrication of nanostructured Ag and Cu onto interwoven threads of a cotton fabric by electroless deposition creates metal nanostructures that show a localized surface plasmon resonance (LSPR) effect. The micro/nanoscale hierarchical ordering of the cotton fabrics allows access to catalytically active sites to participate in heterogeneous catalysis with high efficiency. The ability of metals to absorb visible light through LSPR further enhances the catalytic reaction rates under photoexcitation conditions. Understanding the mode of electron transfer during visible light illumination in Ag@Cotton and Cu@Cotton through electrochemical measurements provides mechanistic evidence on the influence of light in promoting electron transfer during heterogeneous catalysis for the first time. The outcomes presented in this work will be helpful in designing new multifunctional fabrics with the ability to absorb visible light and thereby enhance light-activated catalytic processes.
Resumo:
Curves are a common feature of road infrastructure; however crashes on road curves are associated with increased risk of injury and fatality to vehicle occupants. Countermeasures require the identification of contributing factors. However, current approaches to identifying contributors use traditional statistical methods and have not used self-reported narrative claim to identify factors related to the driver, vehicle and environment in a systemic way. Text mining of 3434 road-curve crash claim records filed between 1 January 2003 and 31 December 2005 at a major insurer in Queensland, Australia, was undertaken to identify risk levels and contributing factors. Rough set analysis was used on insurance claim narratives to identify significant contributing factors to crashes and their associated severity. New contributing factors unique to curve crashes were identified (e.g., tree, phone, over-steer) in addition to those previously identified via traditional statistical analysis of Police and licensing authority records. Text mining is a novel methodology to improve knowledge related to risk and contributing factors to road-curve crash severity. Future road-curve crash countermeasures should more fully consider the interrelationships between environment, the road, the driver and the vehicle, and education campaigns in particular could highlight the increased risk of crash on road-curves.
Resumo:
In multi-vehicle motorcycle crashes, the motorcycle rider is less likely to be at-fault but more commonly severely injured than the other road user. Therefore, not surprisingly, crashes in which motorcycle riders are at-fault and particularly the injuries to the other road users in these crashes have received little research attention. This paper aims to address this gap in the literature by investigating the factors influencing the severity of injury to other road users in motorcyclist-at-fault crashes. Five years of data from Queensland, Australia, were obtained from a database of claims against the compulsory third party (CTP) injury insurance of the at-fault motorcyclists. Analysis of the data using an ordered probit model shows higher injury severity for crashes involving young (under 25) and older (60+) at-fault motorcyclists. Among the not at-fault road users, the young, old, and males were found to be more severely injured than others. Injuries to vehicle occupants were less severe than those to pillions. Crashes that occurred between vehicles traveling in opposite directions resulted in more severe injuries than those involving vehicles traveling in the same direction. While most existing studies have analyzed police reported crash data, this study used CTP insurance data. Comparison of results indicates the potential of using CTP insurance data as an alternative to police reported crash data for gaining a better understanding of risk factors for motorcycle crashes and injury severity.