923 resultados para Biological sciences


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Production of recycled concrete aggregates (RCA) from construction and demolition (C&D) waste has become popular all over the world since the availability of land spaces are limited to dispose. Therefore it is important to seek alternative applications for RCA. The use of RCA in base and sub-base layers in granular pavement is a viable solution. In mechanistic pavement design, rutting (permanent deformation) is considered as the major failure mechanisms of the pavement. The rutting is the accumulation of permanent deformation of pavement layers caused by the repetitive vehicle load. In Queensland, Australia, it is accepted to have the maximum of 20% of reclaimed asphalt pavement (RAP) in RCA and therefore, it is important to investigate the effect of RAP on the permanent deformation properties of RCA. In this study, a series of repeated load triaxial (RLT) tests were conducted on RCA blended with different percentage of RAP to investigate the permanent deformation and resilient modulus properties of RCA. The vertical deformation and resilient modulus values were used to determine the response of RCA for the cyclic loading under standard pressure and loading conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing the importance and use of infrastructures such as bridges, demands more effective structural health monitoring (SHM) systems. SHM has well addressed the damage detection issues through several methods such as modal strain energy (MSE). Many of the available MSE methods either have been validated for limited type of structures such as beams or their performance is not satisfactory. Therefore, it requires a further improvement and validation of them for different types of structures. In this study, an MSE method was mathematically improved to precisely quantify the structural damage at an early stage of formation. Initially, the MSE equation was accurately formulated considering the damaged stiffness and then it was used for derivation of a more accurate sensitivity matrix. Verification of the improved method was done through two plane structures: a steel truss bridge and a concrete frame bridge models that demonstrate the framework of a short- and medium-span of bridge samples. Two damage scenarios including single- and multiple-damage were considered to occur in each structure. Then, for each structure, both intact and damaged, modal analysis was performed using STRAND7. Effects of up to 5 per cent noise were also comprised. The simulated mode shapes and natural frequencies derived were then imported to a MATLAB code. The results indicate that the improved method converges fast and performs well in agreement with numerical assumptions with few computational cycles. In presence of some noise level, it performs quite well too. The findings of this study can be numerically extended to 2D infrastructures particularly short- and medium-span bridges to detect the damage and quantify it more accurately. The method is capable of providing a proper SHM that facilitates timely maintenance of bridges to minimise the possible loss of lives and properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measurement of the moisture variation in soils is required for geotechnical design and research because soil properties and behavior can vary as moisture content changes. The neutron probe, which was developed more than 40 years ago, is commonly used to monitor soil moisture variation in the field. This study reports a full-scale field monitoring of soil moisture using a neutron moisture probe for a period of more than 2 years in the Melbourne (Australia) region. On the basis of soil types available in the Melbourne region, 23 sites were chosen for moisture monitoring down to a depth of 1500 mm. The field calibration method was used to develop correlations relating the volumetric moisture content and neutron counts. Observed results showed that the deepest “wetting front” during the wet season was limited to the top 800 to 1000 mm of soil whilst the top soil layer down to about 550mmresponded almost immediately to the rainfall events. At greater depths (550 to 800mmand below 800 mm), the moisture variations were relatively low and displayed predominantly periodic fluctuations. This periodic nature was captured with Fourier analysis to develop a cyclic moisture model on the basis of an analytical solution of a one-dimensional moisture flow equation for homogeneous soils. It is argued that the model developed can be used to predict the soil moisture variations as applicable to buried structures such as pipes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Population increase and economic developments can lead to construction as well as demolition of infrastructures such as buildings, bridges, roads, etc resulting in used concrete as a primary waste product. Recycling of waste concrete to obtain the recycled concrete aggregates (RCA) for base and/or sub-base materials in road construction is a foremost application to be promoted to gain economical and sustainability benefits. As the mortar, bricks, glass and reclaimed asphalt pavement (RAP) present as constituents in RCA, it exhibits inconsistent properties and performance. In this study, six different types of RCA samples were subjected classification tests such as particle size distribution, plasticity, compaction test, unconfined compressive strength (UCS) and California bearing ratio (CBR) tests. Results were compared with those of the standard road materials used in Queensland, Australia. It was found that material type ‘RM1-100/RM3-0’ and ‘RM1-80/RM3-20’ samples are in the margin of the minimum required specifications of base materials used for high volume unbound granular roads while others are lower than that the minimum requirement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design of society’s major infrastructure systems are generally based on anthropogenic learnings and seldom encapsulate learning from nature. This results from a pervading attitude of superiority of human-designed systems, particularly since the Industrial Revolution. Problems created by such behaviours have previously not been thought to present a serious threat to humanity. However, many built environment professionals are now reconsidering the impact of such systems on the environment and their vulnerability to issues such as climate change. This paper presents an approach to delivering sustainable urban infrastructure that addresses 21st Century needs by emulating natural form, function and process - biomimicry – in infrastructure design. The analysis reveals the context for infrastructure change and the need for sustainable solutions, detailing the current inquiry into biomimicry informed design and highlighting potential applications from literature that demonstrate precedence for nature to inspire the design of urban infrastructure, in particular water and energy systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Access to clean water is essential for human life and a critical issue facing much of modern society, especially as a result of the 21st Century triad of challenges – population growth, resource scarcity and pollution – which contribute to the rising complexity of providing adequate access to this essential resource for large parts of society. As such, there is now an increasing need for innovative solutions to source, treat and distribute water to cities across the globe. This position paper explores biomimicry – emulating natural form, function, process and systems – as an alternative and sustainable design approach to traditional water infrastructure systems. The key barriers to innovations such as biomimicry are summarised, indicating that regulatory and economic grounds are some of the major hindrances to integrating alternative design approaches in the water sector in developed countries. This paper examines some of the benefits of moving past these barriers to develop sustainable, efficient and resilient solutions that provide adequate access to water in the face of contemporary challenges.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With increasing signs of climate change and the influence of national and international carbon-related laws and agreements, governments all over the world are grappling with how to rapidly transition to low-carbon living. This includes adapting to the impacts of climate change that are very likely to be experienced due to current emission levels (including extreme weather and sea level changes), and mitigating against further growth in greenhouse gas emissions that are likely to result in further impacts. Internationally, the concept of ‘Biophilic Urbanism’, a term coined by Professors Tim Beatley and Peter Newman to refer to the use of natural elements as design features in urban landscapes, is emerging as a key component in addressing such climate change challenges in rapidly growing urban contexts. However, the economics of incorporating such options is not well understood and requires further attention to underpin a mainstreaming of biophilic urbanism. Indeed, there appears to be an ad hoc, reactionary approach to creating economic arguments for or against the design, installation or maintenance of natural elements such as green walls, green roofs, streetscapes, and parklands. With this issue in mind, this paper will overview research as part of an industry collaborative research project that considers the potential for using a number of environmental economic valuation techniques that have evolved over the last several decades in agricultural and resource economics, to systematically value the economic value of biophilic elements in the urban context. Considering existing literature on environmental economic valuation techniques, the paper highlights opportunities for creating a standardised language for valuing biophilic elements. The conclusions have implications for expanding the field of environmental economic value to support the economic evaluations and planning of the greater use of natural elements in cities. Insights are also noted for the more mature fields of agricultural and resource economics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Engineering Your Future: An Australasian Guide, 2nd Edition, is the ideal textbook for undergraduate students beginning their engineering studies. Building on the success of the popular 1st edition, this new edition continues the strong and practical emphasis on skills that are essential for engineering problem-solving and design. Numerous topical and locally focused examples of projects across the broad range of engineering disciplines help to graphically demonstrate the role and responsibilities of a professional engineer. Themes of sustainability, ethical practice and effective communication are constant throughout the text. In addition, its many exercises and project activities will encourage students to put key engineering principles and skills into practice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural design features in the built environment or biophilic elements are emerging as a potential response to the challenges of climate change, urbanisation and population pressures which have invited issues such as rising urban heat island effect, rising pollution, increased congestion, among others. This concept of living cities was made popular by Professor Tim Beatley in his book titled ‘Biophilic Urbanism’. Evidence of biophilic urbanism can be seen in some cities from around the globe since decoupling environmental pressures from future development is a priority on many agendas. Berlin is an example of a modern economy that has adopted an ecological sustainable development approach to reduce environmental degradation while driving innovation and employment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Built environment design around the world faces a number of 21st Century challenges such as rising urban heat island effect and rising pollution, which are further worsened by consequences of climate change and increasing urban populations. Such challenges have caused cities around the globe to investigate options that can help to significantly reduce the environmental pressures from current and future development, requiring new areas of innovation. One such area is ‘Biophilic Urbanism’, which refers to the use of natural elements as design features in urban centres to assist efforts to address climate change issues in rapidly growing economies. Singapore is an illustration of a thriving economy that exemplifies the value of embedding nature into its built environment. The significance of urban green space has been recognised in Singapore as early as the 1960s when Lee Kuan Yew embarked on the ‘Garden City’ concept. 50 years later, Singapore has achieved its Garden City goal and is now entering a new era of sustainability, to create a ‘City in a Garden’. Although the economics of such efforts is not entirely understood, the city of Singapore has continued to pursue visions of becoming a biophilic city. Indeed, there appears to be important lessons to be learned from a city that has challenged the preconceived notion that protecting vegetation in a city is not economically viable. Hence, this paper will discuss the case study of Singapore to highlight the drivers, along with the economic considerations identified along the way. The conclusions have implications for expanding the notion of biophilic urbanism, particularly in the Australian context by discussing the lessons learned from this city. The research is part of Sustainable Built Environment National Research Centre, and has been developed in collaboration with the Curtin University Sustainability Policy Institute.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The conflicts in Iraq and Afghanistan have been epitomized by the insurgents’ use of the improvised explosive device against vehicle-borne security forces. These weapons, capable of causing multiple severely injured casualties in a single incident, pose the most prevalent single threat to Coalition troops operating in the region. Improvements in personal protection and medical care have resulted in increasing numbers of casualties surviving with complex lower limb injuries, often leading to long-term disability. Thus, there exists an urgent requirement to investigate and mitigate against the mechanism of extremity injury caused by these devices. This will necessitate an ontological approach, linking molecular, cellular and tissue interaction to physiological dysfunction. This can only be achieved via a collaborative approach between clinicians, natural scientists and engineers, combining physical and numerical modelling tools with clinical data from the battlefield. In this article, we compile existing knowledge on the effects of explosions on skeletal injury, review and critique relevant experimental and computational research related to lower limb injury and damage and propose research foci required to drive the development of future mitigation technologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Australian research and technological solutions are now being applied throughout the world.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Periodontal disease is characterized by the destruction of the tissues that attach the tooth to the alveolar bone. Various methods for regenerative periodontal therapy including the use of barrier membranes, bone replacement grafts, and growth factor delivery have been investigated; however, true regeneration of periodontal tissue is still a significant challenge to scientists and clinicians. The focus on periodontal tissue engineering has shifted from attempting to recreate tissue replacements/constructs to the development of biomaterials that incorporate and release regulatory signals to achieve in situ periodontal regeneration. The release of ions and molecular cues from biomaterials may help to unlock latent regenerative potential in the body by regulating cell proliferation and differentiation towards different lineages (e.g. osteoblasts and cementoblasts). Silicate-based bioactive materials, including bioactive silicate glasses and ceramics, have become the materials of choice for periodontal regeneration, due to their favourable osteoconductivity and bioactivity. This article will focus on the most recent advances in the in vitro and in vivo biological application of silicate-based ceramics, specifically as it relates to periodontal tissue engineering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND There is a growing volume of open source ‘education material’ on energy efficiency now available however the Australian government has identified a need to increase the use of such materials in undergraduate engineering education. Furthermore, there is a reported need to rapidly equip engineering graduates with the capabilities in conducting energy efficiency assessments, to improve energy performance across major sectors of the economy. In January 2013, building on several years of preparatory action-research initiatives, the former Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education (DIICCSRTE) offered $600,000 to develop resources for energy efficiency related graduate attributes, targeting Engineers Australia college disciplines, accreditation requirements and opportunities to address such requirements. PURPOSE This paper discusses a $430,000 successful bid by a university consortium led by QUT and including RMIT, UA, UOW, and VU, to design and pilot several innovative, targeted open-source resources for curriculum renewal related to energy efficiency assessments, in Australian engineering programs (2013-2014), including ‘flat-pack’, ‘media-bites’, ‘virtual reality’ and ‘deep dive’ case study initiatives. DESIGN/ METHOD The paper draws on literature review and lessons learned by the consortium partners in resource development over the last several years to discuss methods for selecting key graduate attributes and providing targeted resources, supporting materials, and innovative delivery options to assist universities deliver knowledge and skills to develop such attributes. This includes strategic industry and key stakeholders engagement. The paper also discusses processes for piloting, validating, peer reviewing, and refining these resources using a rigorous and repeatable approach to engaging with academic and industry colleagues. RESULTS The paper provides an example of innovation in resource development through an engagement strategy that takes advantage of existing networks, initiatives, and funding arrangements, while informing program accreditation requirements, to produce a cost-effective plan for rapid integration of energy efficiency within education. By the conference, stakeholder workshops will be complete. Resources will be in the process of being drafted, building on findings from the stakeholder engagement workshops. Reporting on this project “in progress” provides a significant opportunity to share lessons learned and take on board feedback and input. CONCLUSIONS This paper provides a useful reference document for others considering significant resource development in a consortium approach, summarising benefits and challenges. The paper also provides a basis for documenting the second half of the project, which comprises piloting resources and producing a ‘good practice guide’ for energy efficiency related curriculum renewal.