924 resultados para crash data


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports profiling information for speeding offenders and is part of a larger project that assessed the deterrent effects of increased speeding penalties in Queensland, Australia, using a total of 84,456 speeding offences. The speeding offenders were classified into three groups based on the extent and severity of an index offence: once-only low-rang offenders; repeat high-range offenders; and other offenders. The three groups were then compared in terms of personal characteristics, traffic offences, crash history and criminal history. Results revealed a number of significant differences between repeat high-range offenders and those in the other two offender groups. Repeat high-range speeding offenders were more likely to be male, younger, hold a provisional and a motorcycle licence, to have committed a range of previous traffic offences, to have a significantly greater likelihood of crash involvement, and to have been involved in multiple-vehicle crashes than drivers in the other two offender types. Additionally, when a subset of offenders’ criminal histories were examined, results revealed that repeat high-range speeding offenders were also more likely to have committed a previous criminal offence compared to once only low-range and other offenders and that 55.2% of the repeat high-range offenders had a criminal history. They were also significantly more likely to have committed drug offences and offences against order than the once only low-range speeding offenders, and significantly more likely to have committed regulation offences than those in the other offenders group. Overall, the results indicate that speeding offenders are not an homogeneous group and that, therefore, more tailored and innovative sanctions should be considered and evaluated for high-range recidivist speeders because they are a high-risk road user group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Governments around the world want to know a lot about who we are and what we’re doing online and they want communications companies to help them find it. We don’t know a lot about when companies hand over this data, but we do know that it’s becoming increasingly common.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-pulse tests are commonly used as a method for assessing the switching performance of power semiconductor switches in a clamped inductive switching application. Data generated from these tests are typically in the form of sampled waveform data captured using an oscilloscope. In cases where it is of interest to explore a multi-dimensional parameter space and corresponding result space it is necessary to reduce the data into key performance metrics via feature extraction. This paper presents techniques for the extraction of switching performance metrics from sampled double-pulse waveform data. The reported techniques are applied to experimental data from characterisation of a cascode gate drive circuit applied to power MOSFETs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Australian national biomonitoring for persistent organic pollutants (POPs) relies upon age-specific pooled serum samples to characterize central tendencies of concentrations but does not provide estimates of upper bound concentrations. This analysis compares population variation from biomonitoring datasets from the US, Canada, Germany, Spain, and Belgium to identify and test patterns potentially useful for estimating population upper bound reference values for the Australian population. Methods Arithmetic means and the ratio of the 95th percentile to the arithmetic mean (P95:mean) were assessed by survey for defined age subgroups for three polychlorinated biphenyls (PCBs 138, 153, and 180), hexachlorobenzene (HCB), p,p-dichlorodiphenyldichloroethylene (DDE), 2,2′,4,4′ tetrabrominated diphenylether (PBDE 47), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Results Arithmetic mean concentrations of each analyte varied widely across surveys and age groups. However, P95:mean ratios differed to a limited extent, with no systematic variation across ages. The average P95:mean ratios were 2.2 for the three PCBs and HCB; 3.0 for DDE; 2.0 and 2.3 for PFOA and PFOS, respectively. The P95:mean ratio for PBDE 47 was more variable among age groups, ranging from 2.7 to 4.8. The average P95:mean ratios accurately estimated age group-specific P95s in the Flemish Environmental Health Survey II and were used to estimate the P95s for the Australian population by age group from the pooled biomonitoring data. Conclusions Similar population variation patterns for POPs were observed across multiple surveys, even when absolute concentrations differed widely. These patterns can be used to estimate population upper bounds when only pooled sampling data are available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The macroscopic fundamental diagram (MFD) traffic modelling method has been proved for large urban roads and freeway networks, but hysteresis and scatter have been found in both such networks. This paper investigates how incident variables affect the shape and scatter of the MFD using both simulated data and real data collected from the M3 Pacific motorway in Brisbane, Australia. Three key components of incidents are investigated based on the simulated data (i.e. incident location, incident duration and traffic demand). The results based on simulated data indicate that the diagram shape is a property not only of the network itself but also of the incident variables. Diagrams for three types of real incidents (crash, hazard and vehicle breakdown) are explored separately. The results based on the empirical data are consistent with the simulated results. The hysteresis phenomenon occurs both upstream and downstream of the incident location, but for opposite hysteresis loops. The gradient of the upstream diagram is greater than that downstream on the incident site, when traffic demand is for an off-peak period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past few years, there has been a steady increase in the attention, importance and focus of green initiatives related to data centers. While various energy aware measures have been developed for data centers, the requirement of improving the performance efficiency of application assignment at the same time has yet to be fulfilled. For instance, many energy aware measures applied to data centers maintain a trade-off between energy consumption and Quality of Service (QoS). To address this problem, this paper presents a novel concept of profiling to facilitate offline optimization for a deterministic application assignment to virtual machines. Then, a profile-based model is established for obtaining near-optimal allocations of applications to virtual machines with consideration of three major objectives: energy cost, CPU utilization efficiency and application completion time. From this model, a profile-based and scalable matching algorithm is developed to solve the profile-based model. The assignment efficiency of our algorithm is then compared with that of the Hungarian algorithm, which does not scale well though giving the optimal solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is a step forward in improving the accuracy of detecting anomaly in a data graph representing connectivity between people in an online social network. The proposed hybrid methods are based on fuzzy machine learning techniques utilising different types of structural input features. The methods are presented within a multi-layered framework which provides the full requirements needed for finding anomalies in data graphs generated from online social networks, including data modelling and analysis, labelling, and evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we summarize our recent work in analyz- ing and predicting behaviors in sports using spatiotemporal data. We specifically focus on two recent works: 1) Predicting the location of shot in tennis using Hawk-Eye tennis data, and 2) Clustering spatiotemporal plays in soccer to discover the methods in which they get a shot on goal from a professional league.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a single pass algorithm for mining discriminative Itemsets in data streams using a novel data structure and the tilted-time window model. Discriminative Itemsets are defined as Itemsets that are frequent in one data stream and their frequency in that stream is much higher than the rest of the streams in the dataset. In order to deal with the data structure size, we propose a pruning process that results in the compact tree structure containing discriminative Itemsets. Empirical analysis shows the sound time and space complexity of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Problem addressed Wrist-worn accelerometers are associated with greater compliance. However, validated algorithms for predicting activity type from wrist-worn accelerometer data are lacking. This study compared the activity recognition rates of an activity classifier trained on acceleration signal collected on the wrist and hip. Methodology 52 children and adolescents (mean age 13.7 +/- 3.1 year) completed 12 activity trials that were categorized into 7 activity classes: lying down, sitting, standing, walking, running, basketball, and dancing. During each trial, participants wore an ActiGraph GT3X+ tri-axial accelerometer on the right hip and the non-dominant wrist. Features were extracted from 10-s windows and inputted into a regularized logistic regression model using R (Glmnet + L1). Results Classification accuracy for the hip and wrist was 91.0% +/- 3.1% and 88.4% +/- 3.0%, respectively. The hip model exhibited excellent classification accuracy for sitting (91.3%), standing (95.8%), walking (95.8%), and running (96.8%); acceptable classification accuracy for lying down (88.3%) and basketball (81.9%); and modest accuracy for dance (64.1%). The wrist model exhibited excellent classification accuracy for sitting (93.0%), standing (91.7%), and walking (95.8%); acceptable classification accuracy for basketball (86.0%); and modest accuracy for running (78.8%), lying down (74.6%) and dance (69.4%). Potential Impact Both the hip and wrist algorithms achieved acceptable classification accuracy, allowing researchers to use either placement for activity recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid recursive estimation of hidden Markov Model (HMM) parameters is important in applications that place an emphasis on the early availability of reasonable estimates (e.g. for change detection) rather than the provision of longer-term asymptotic properties (such as convergence, convergence rate, and consistency). In the context of vision- based aircraft (image-plane) heading estimation, this paper suggests and evaluates the short-data estimation properties of 3 recursive HMM parameter estimation techniques (a recursive maximum likelihood estimator, an online EM HMM estimator, and a relative entropy based estimator). On both simulated and real data, our studies illustrate the feasibility of rapid recursive heading estimation, but also demonstrate the need for careful step-size design of HMM recursive estimation techniques when these techniques are intended for use in applications where short-data behaviour is paramount.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The upstream oil & gas industry has been contending with massive data sets and monolithic files for many years, but “Big Data”—that is, the ability to apply more sophisticated types of analytical tools to information in a way that extracts new insights or creates new forms of value—is a relatively new concept that has the potential to significantly re-shape the industry. Despite the impressive amount of value that is being realized by Big Data technologies in other parts of the marketplace, however, much of the data collected within the oil & gas sector tends to be discarded, ignored, or analyzed in a very cursory way. This paper examines existing data management practices in the upstream oil & gas industry, and compares them to practices and philosophies that have emerged in organizations that are leading the Big Data revolution. The comparison shows that, in companies that are leading the Big Data revolution, data is regarded as a valuable asset. The presented evidence also shows, however, that this is usually not true within the oil & gas industry insofar as data is frequently regarded there as descriptive information about a physical asset rather than something that is valuable in and of itself. The paper then discusses how upstream oil & gas companies could potentially extract more value from data, and concludes with a series of specific technical and management-related recommendations to this end.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterogeneous health data is a critical issue when managing health information for quality decision making processes. In this paper we examine the efficient aggregation of lifestyle information through a data warehousing architecture lens. We present a proof of concept for a clinical data warehouse architecture that enables evidence based decision making processes by integrating and organising disparate data silos in support of healthcare services improvement paradigms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying product families has been considered as an effective way to accommodate the increasing product varieties across the diverse market niches. In this paper, we propose a novel framework to identifying product families by using a similarity measure for a common product design data BOM (Bill of Materials) based on data mining techniques such as frequent mining and clus-tering. For calculating the similarity between BOMs, a novel Extended Augmented Adjacency Matrix (EAAM) representation is introduced that consists of information not only of the content and topology but also of the fre-quent structural dependency among the various parts of a product design. These EAAM representations of BOMs are compared to calculate the similarity between products and used as a clustering input to group the product fami-lies. When applied on a real-life manufacturing data, the proposed framework outperforms a current baseline that uses orthogonal Procrustes for grouping product families.