784 resultados para statistical lip modelling
Resumo:
The most important aspect of modelling a geological variable, such as metal grade, is the spatial correlation. Spatial correlation describes the relationship between realisations of a geological variable sampled at different locations. Any method for spatially modelling such a variable should be capable of accurately estimating the true spatial correlation. Conventional kriged models are the most commonly used in mining for estimating grade or other variables at unsampled locations, and these models use the variogram or covariance function to model the spatial correlations in the process of estimation. However, this usage assumes the relationships of the observations of the variable of interest at nearby locations are only influenced by the vector distance between the locations. This means that these models assume linear spatial correlation of grade. In reality, the relationship with an observation of grade at a nearby location may be influenced by both distance between the locations and the value of the observations (ie non-linear spatial correlation, such as may exist for variables of interest in geometallurgy). Hence this may lead to inaccurate estimation of the ore reserve if a kriged model is used for estimating grade of unsampled locations when nonlinear spatial correlation is present. Copula-based methods, which are widely used in financial and actuarial modelling to quantify the non-linear dependence structures, may offer a solution. This method was introduced by Bárdossy and Li (2008) to geostatistical modelling to quantify the non-linear spatial dependence structure in a groundwater quality measurement network. Their copula-based spatial modelling is applied in this research paper to estimate the grade of 3D blocks. Furthermore, real-world mining data is used to validate this model. These copula-based grade estimates are compared with the results of conventional ordinary and lognormal kriging to present the reliability of this method.
Resumo:
This work explores the potential of Australian native plants as a source of second-generation biodiesel for internal combustion engines application. Biodiesels were evaluated from a number of non-edible oil seeds which are grow naturally in Queensland, Australia. The quality of the produced biodiesels has been investigated by several experimental and numerical methods. The research methodology and numerical model developed in this study can be used for a broad range of biodiesel feedstocks and for the future development of renewable native biodiesel in Australia.
Resumo:
In this paper we present a new method for performing Bayesian parameter inference and model choice for low count time series models with intractable likelihoods. The method involves incorporating an alive particle filter within a sequential Monte Carlo (SMC) algorithm to create a novel pseudo-marginal algorithm, which we refer to as alive SMC^2. The advantages of this approach over competing approaches is that it is naturally adaptive, it does not involve between-model proposals required in reversible jump Markov chain Monte Carlo and does not rely on potentially rough approximations. The algorithm is demonstrated on Markov process and integer autoregressive moving average models applied to real biological datasets of hospital-acquired pathogen incidence, animal health time series and the cumulative number of poison disease cases in mule deer.
Resumo:
Urbanisation significantly changes the characteristics of a catchment as natural areas are transformed to impervious surfaces such as roads, roofs and parking lots. The increased fraction of impervious surfaces leads to changes to the stormwater runoff characteristics, whilst a variety of anthropogenic activities common to urban areas generate a range of pollutants such as nutrients, solids and organic matter. These pollutants accumulate on catchment surfaces and are removed and trans- ported by stormwater runoff and thereby contribute pollutant loads to receiving waters. In summary, urbanisation influences the stormwater characteristics of a catchment, including hydrology and water quality. Due to the growing recognition that stormwater pollution is a significant environmental problem, the implementation of mitigation strategies to improve the quality of stormwater runoff is becoming increasingly common in urban areas. A scientifically robust stormwater quality treatment strategy is an essential requirement for effective urban stormwater management. The efficient design of treatment systems is closely dependent on the state of knowledge in relation to the primary factors influencing stormwater quality. In this regard, stormwater modelling outcomes provide designers with important guidance and datasets which significantly underpin the design of effective stormwater treatment systems. Therefore, the accuracy of modelling approaches and the reliability modelling outcomes are of particular concern. This book discusses the inherent complexity and key characteristics in the areas of urban hydrology and stormwater quality, based on the influence exerted by a range of rainfall and catchment characteristics. A comprehensive field sampling and testing programme in relation to pollutant build-up, an urban catchment monitoring programme in relation to stormwater quality and the outcomes from advanced statistical analyses provided the platform for the knowledge creation. Two case studies and two real-world applications are discussed to illustrate the translation of the knowledge created to practical use in relation to the role of rainfall and catchment characteristics on urban stormwater quality. An innovative rainfall classification based on stormwater quality was developed to support the effective and scientifically robust design of stormwater treatment systems. Underpinned by the rainfall classification methodology, a reliable approach for design rainfall selection is proposed in order to optimise stormwater treatment based on both, stormwater quality and quantity. This is a paradigm shift from the common approach where stormwater treatment systems are designed based solely on stormwater quantity data. Additionally, how pollutant build-up and stormwater runoff quality vary with a range of catchment characteristics was also investigated. Based on the study out- comes, it can be concluded that the use of only a limited number of catchment parameters such as land use and impervious surface percentage, as it is the case in current modelling approaches, could result in appreciable error in water quality estimation. Influential factors which should be incorporated into modelling in relation to catchment characteristics, should also include urban form and impervious surface area distribution. The knowledge created through the research investigations discussed in this monograph is expected to make a significant contribution to engineering practice such as hydrologic and stormwater quality modelling, stormwater treatment design and urban planning, as the study outcomes provide practical approaches and recommendations for urban stormwater quality enhancement. Furthermore, this monograph also demonstrates how fundamental knowledge of stormwater quality processes can be translated to provide guidance on engineering practice, the comprehensive application of multivariate data analyses techniques and a paradigm on integrative use of computer models and mathematical models to derive practical outcomes.
Resumo:
Building information modelling (BIM) radically changes the practices in architecture, engineering and construction (AEC) and creates new job opportunities. Many governments, such as the United Kingdom, have made BIM a mandatory requirement. This substantially drives the demand for a BIM-literate workforce. Universities are facing the challenge to incorporate BIM into their curricula and produce “BIM ready” graduates to meet the needs of the industry. Like other universities, Queensland University of Technology (QUT) is at the heart of this change and aspires to develop collaborative BIM education across AEC. Previous BIM education studies identify that inadequate BIM awareness of AEC academics is one of the challenges for developing a BIM curriculum and there is a dearth in the learning and teaching support for academics on BIM education. Equipping the AEC academics for a more BIM focused curriculum is all the while more important. This paper aims to leverage knowledge drawn from a Learning & Teaching project currently undertaken at QUT. Its specific objectives are to: 1) review the existing learning and teaching initiatives on BIM education; and 2) briefly describe the learning and teaching activities on collaborative BIM education at QUT. Significance of the paper lies on revealing the importance of building up the capacity of AEC academics for collaborative BIM education. The paper contributes to sparking the interests in better equipping AEC academics to understand what curriculum changes would assist in BIM uptake within the relevant courses to provide context for changes in units; and how the use of BIM can improve the understanding by students of the large amounts of professional knowledge they need to function effectively as graduates.
Resumo:
Supervisory Control and Data Acquisition (SCADA) systems are one of the key foundations of smart grids. The Distributed Network Protocol version 3 (DNP3) is a standard SCADA protocol designed to facilitate communications in substations and smart grid nodes. The protocol is embedded with a security mechanism called Secure Authentication (DNP3-SA). This mechanism ensures that end-to-end communication security is provided in substations. This paper presents a formal model for the behavioural analysis of DNP3-SA using Coloured Petri Nets (CPN). Our DNP3-SA CPN model is capable of testing and verifying various attack scenarios: modification, replay and spoofing, combined complex attack and mitigation strategies. Using the model has revealed a previously unidentified flaw in the DNP3-SA protocol that can be exploited by an attacker that has access to the network interconnecting DNP3 devices. An attacker can launch a successful attack on an outstation without possessing the pre-shared keys by replaying a previously authenticated command with arbitrary parameters. We propose an update to the DNP3-SA protocol that removes the flaw and prevents such attacks. The update is validated and verified using our CPN model proving the effectiveness of the model and importance of the formal protocol analysis.
Resumo:
In an estuary, mixing and dispersion result from a combination of large-scale advection and smallscale turbulence, which are complex to estimate. The predictions of scalar transport and mixing are often inferred and rarely accurate, due to inadequate understanding of the contributions of these difference scales to estuarine recirculation. A multi-device field study was conducted in a small sub-tropical estuary under neap tide conditions with near-zero fresh water discharge for about 48 hours. During the study, acoustic Doppler velocimeters (ADV) were sampled at high frequency (50 Hz), while an acoustic Doppler current profiler (ADCP) and global positioning system (GPS) tracked drifters were used to obtain some lower frequency spatial distribution of the flow parameters within the estuary. The velocity measurements were complemented with some continuous measurement of water depth, conductivity, temperature and some other physiochemical parameters. Thorough quality control was carried out by implementation of relevant error removal filters on the individual data set to intercept spurious data. A triple decomposition (TD) technique was introduced to access the contributions of tides, resonance and ‘true’ turbulence in the flow field. The time series of mean flow measurements for both the ADCP and drifter were consistent with those of the mean ADV data when sampled within a similar spatial domain. The tidal scale fluctuation of velocity and water level were used to examine the response of the estuary to tidal inertial current. The channel exhibited a mixed type wave with a typical phase-lag between 0.035π– 0.116π. A striking feature of the ADV velocity data was the slow fluctuations, which exhibited large amplitudes of up to 50% of the tidal amplitude, particularly in slack waters. Such slow fluctuations were simultaneously observed in a number of physiochemical properties of the channel. The ensuing turbulence field showed some degree of anisotropy. For all ADV units, the horizontal turbulence ratio ranged between 0.4 and 0.9, and decreased towards the bed, while the vertical turbulence ratio was on average unity at z = 0.32 m and approximately 0.5 for the upper ADV (z = 0.55 m). The result of the statistical analysis suggested that the ebb phase turbulence field was dominated by eddies that evolved from ejection type process, while that of the flood phase contained mixed eddies with significant amount related to sweep type process. Over 65% of the skewness values fell within the range expected of a finite Gaussian distribution and the bulk of the excess kurtosis values (over 70%) fell within the range of -0.5 and +2. The TD technique described herein allowed the characterisation of a broader temporal scale of fluctuations of the high frequency data sampled within the durations of a few tidal cycles. The study provides characterisation of the ranges of fluctuation required for an accurate modelling of shallow water dispersion and mixing in a sub-tropical estuary.
Resumo:
This paper deals with a finite element modelling method for thin layer mortared masonry systems. In this method, the mortar layers including the interfaces are represented using a zero thickness interface element and the masonry units are modelled using an elasto-plastic, damaging solid element. The interface element is formulated using two regimes; i) shear-tension and ii) shearcompression. In the shear-tension regime, the failure of joint is consiedered through an eliptical failure criteria and in shear-compression it is considered through Mohr Coulomb type failure criterion. An explicit integration scheme is used in an implicit finite element framework for the formulation of the interface element. The model is calibrated with an experimental dataset from thin layer mortared masonry prism subjected to uniaxial compression, a triplet subjected to shear loads a beam subjected to flexural loads and used to predict the response of thin layer mortared masonry wallettes under orthotropic loading. The model is found to simulate the behaviour of a thin layer mortated masonry shear wall tested under pre-compression and inplane shear quite adequately. The model is shown to reproduce the failure of masonry panels under uniform biaxial state of stresses.
Resumo:
The election of an Australian Labor Government in Australia in 2007 saw ‘social inclusion’ emerge as the official and overarching social policy agenda. Being ‘included’ was subsequently defined by the ALP Government as being able to ‘have the resources, opportunities and capabilities needed to learn, work, engage and have a voice’. Various researchers in Australia demonstrated an interest in social inclusion, as it enabled them to construct a multi-dimensional framework for measuring disadvantage. This research program resulted in various forms of statistical modelling based on some agreement about what it means to be included in society. The multi-dimensional approach taken by academic researchers, however, did not necessarily translate to a new model of social policy development or implementation. We argue that, similar to the experience of the UK, Australia’s social inclusion policy agenda was for the most part narrowly and individually defined by politicians and policy makers, particularly in terms of equating being employed with being included. We conclude with discussion about the need to strengthen the social inclusion framework by adopting an understanding of social inequality and social justice that is more relational and less categorical.
Resumo:
Searching for efficient solid sorbents for CO2 adsorption and separation is important for developing emergent carbon reduction and natural gas purification technology. This work, for the first time, has investigated the adsorption of CO2 on newly experimentally realized cage-like B40 fullerene (Zhai et al., 2014) based on density functional theory calculations. We find that the adsorption of CO2 on B40 fullerene involves a relatively large energy barrier (1.21 eV), however this can be greatly decreased to 0.35 eV by introducing an extra electron. A practical way to realize negatively charged B40 fullerene is then proposed by encapsulating a Li atom into the B40 fullerene (Li@B40). Li@B40 is found to be highly stable and can significantly enhance both the thermodynamics and kinetics of CO2 adsorption, while the adsorptions of N2, CH4 and H2 on the Li@B40 fullerene remain weak in comparison. Since B40 fullerene has been successfully synthesized in a most recent experiment, our results highlight a new promising material for CO2 capture and separation for future experimental validation.
Resumo:
This thesis develops comprehensive mathematical models for an advanced drying technology Intermittent Microwave Convective Drying (IMCD). The models provide an improved physical understanding of the heat and mass transport during the drying process, which will help to improve the quality of dried food and energy efficiency of the process, as well as will increase the ability of automation and optimization. The final model in this thesis represents the most comprehensive fundamental multiphase model for IMCD that considers 3D electromagnetics coupled with multiphase porous media transport processes. The 3D electromagnetics considers Maxwell's equation and multiphase transport model considers three different phases: solid matrix, liquid water and gas consisting water vapour and air. The multiphase transport includes pressure-driven flow, capillary diffusion, binary diffusion, and evaporation. The models developed in this thesis were validated with extensive experimental investigations.
Resumo:
Despite the extent of works done on modelling port water collisions, not much research effort has been devoted to modelling collisions at port anchorages. This paper aims to fill this important gap in literature by applying the Navigation Traffic Conflict Technique (NTCT) for measuring the collision potentials in anchorages and for examining the factors contributing to collisions. Grounding on the principles of the NTCT, a collision potential measurement model and a collision potential prediction model were developed. These models were illustrated by using vessel movement data of the anchorages in Singapore port waters. Results showed that the measured collision potentials are in close agreement with those perceived by harbour pilots. Higher collision potentials were found in anchorages attached to shoreline and international fairways, but not at those attached to confined water. Higher operating speeds, larger numbers of isolated danger marks and day conditions were associated with reduction in the collision potentials.
Resumo:
This paper describes recent updates to a milling train extraction model used to assess and predict the performance of a milling train. An extension was made to the milling unit model for the bagasse mills to replace the imbibition coefficient with crushing factor and mixing efficiency. New empirical relationships for reabsorption factor, imbibition coefficient, crushing factor, mixing efficiency and purity ratio were developed. The new empirical relationships were tested against factory measurements and previous model predictions. The updated model has been implemented in the SysCAD process modelling software. New additions to the model implementation include: a shredder model to assess or predict cane preparation, mill and shredder drives for power consumption and an updated imbibition control system to add allow water to be added to intermediate mills.
Resumo:
Species distribution models (SDMs) are considered to exemplify Pattern rather than Process based models of a species' response to its environment. Hence when used to map species distribution, the purpose of SDMs can be viewed as interpolation, since species response is measured at a few sites in the study region, and the aim is to interpolate species response at intermediate sites. Increasingly, however, SDMs are also being used to also extrapolate species-environment relationships beyond the limits of the study region as represented by the training data. Regardless of whether SDMs are to be used for interpolation or extrapolation, the debate over how to implement SDMs focusses on evaluating the quality of the SDM, both ecologically and mathematically. This paper proposes a framework that includes useful tools previously employed to address uncertainty in habitat modelling. Together with existing frameworks for addressing uncertainty more generally when modelling, we then outline how these existing tools help inform development of a broader framework for addressing uncertainty, specifically when building habitat models. As discussed earlier we focus on extrapolation rather than interpolation, where the emphasis on predictive performance is diluted by the concerns for robustness and ecological relevance. We are cognisant of the dangers of excessively propagating uncertainty. Thus, although the framework provides a smorgasbord of approaches, it is intended that the exact menu selected for a particular application, is small in size and targets the most important sources of uncertainty. We conclude with some guidance on a strategic approach to identifying these important sources of uncertainty. Whilst various aspects of uncertainty in SDMs have previously been addressed, either as the main aim of a study or as a necessary element of constructing SDMs, this is the first paper to provide a more holistic view.
Resumo:
Working memory-related brain activation has been widely studied, and impaired activation patterns have been reported for several psychiatric disorders. We investigated whether variation in N-back working memory brain activation is genetically influenced in 60 pairs of twins, (29 monozygotic (MZ), 31 dizygotic (DZ); mean age 24.4 ± 1.7S.D.). Task-related brain response (BOLD percent signal difference of 2 minus 0-back) was measured in three regions of interest. Although statistical power was low due to the small sample size, for middle frontal gyrus, angular gyrus, and supramarginal gyrus, the MZ correlations were, in general, approximately twice those of the DZ pairs, with non-significant heritability estimates (14-30%) in the low-moderate range. Task performance was strongly influenced by genes (57-73%) and highly correlated with cognitive ability (0.44-0.55). This study, which will be expanded over the next 3 years, provides the first support that individual variation in working memory-related brain activation is to some extent influenced by genes.