920 resultados para dense system
Resumo:
This paper introduces a minimalistic approach to produce a visual hybrid map of a mobile robot’s working environment. The proposed system uses omnidirectional images along with odometry information to build an initial dense posegraph map. Then a two level hybrid map is extracted from the dense graph. The hybrid map consists of global and local levels. The global level contains a sparse topological map extracted from the initial graph using a dual clustering approach. The local level contains a spherical view stored at each node of the global level. The spherical views provide both an appearance signature for the nodes, which the robot uses to localize itself in the environment, and heading information when the robot uses the map for visual navigation. In order to show the usefulness of the map, an experiment was conducted where the map was used for multiple visual navigation tasks inside an office workplace.
Resumo:
Современный этап развития комплексов автоматического управления и навигации малогабаритными БЛА многократного применения предъявляет высокие требования к автономности, точности и миниатюрности данных систем. Противоречивость требований диктует использование функционального и алгоритмического объединения нескольких разнотипных источников навигационной информации в едином вычислительном процессе на основе методов оптимальной фильтрации. Получили широкое развитие бесплатформенные инерциальные навигационные системы (БИНС) на основе комплексирования данных микромеханических датчиков инерциальной информации и датчиков параметров движения в воздушном потоке с данными спутниковых навигационных систем (СНС). Однако в современных условиях такой подход не в полной мере реализует требования к помехозащищённости, автономности и точности получаемой навигационной информации. Одновременно с этим достигли значительного прогресса навигационные системы, использующие принципы корреляционно экстремальной навигации по оптическим ориентирам и цифровым картам местности. Предлагается схема построения автономной автоматической навигационной системы (АНС) для БЛА многоразового применения на основе объединения алгоритмов БИНС, спутниковой навигационной системы и оптической навигационной системы. The modern stage of automatic control and guidance systems development for small unmanned aerial vehicles (UAV) is determined by advanced requirements for autonomy, accuracy and size of the systems. The contradictory of the requirements dictates novel functional and algorithmic tight coupling of several different onboard sensors into one computational process, which is based on methods of optimal filtering. Nowadays, data fusion of micro-electro mechanical sensors of inertial measurement units, barometric pressure sensors, and signals of global navigation satellite systems (GNSS) receivers is widely used in numerous strap down inertial navigation systems (INS). However, the systems do not fully comply with such requirements as jamming immunity, fault tolerance, autonomy, and accuracy of navigation. At the same time, the significant progress has been recently demonstrated by the navigation systems, which use the correlation extremal principle applied for optical data flow and digital maps. This article proposes a new architecture of automatic navigation management system (ANMS) for small UAV, which combines algorithms of strap down INS, satellite navigation and optical navigation system.
Resumo:
This paper estimates the benefit of a plan for information providing system on road administration by WebGIS. The system will reduce travel costs of visitors from their business establishments to a road administration section of a city office. The authors had individual interviews with the visitors at the section of the Ichikawa City Office. Annual total sum of travel costs was estimated at 37 million yen at most. This paper also proposes formulas which expect the frequency of visits or the total sum of travel costs from the spatial distribution of the business establishments without questionnaires.
Resumo:
With the introduction of Check 21 law and the development of FSTC's echeck system, there has been an increasing usage of e-cheque conversions and acceptance among retailers, banks, and consumers. However, the current e-cheque system does not address issues concerning privacy, confidentiality, and traceability. We highlight the issues concerning the current electronic cheque system and provide a solution to overcome those drawbacks.
Resumo:
Customized magnetic traps were developed to produce a domain of dense plasmas with a narrow ion beam directed to a particular area of the processed substrate. A planar magnetron coupled with an arc discharge source created the magnetic traps to confine the plasma electrons and generate the ion beam with the controlled ratio of ion-to-neutral fluxes. Images of the plasma jet patterns and numerical vizualizations help explaining the observed phenomena.
Resumo:
Lanthanum oxide (La2O3) nanostructured films are synthesized on a p-type silicon wafer by ablation of La2O3 pellet due to interaction with hot dense argon plasmas in a modified dense plasma focus (DPF) device. The nanostructured films are investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) spectra. SEM study shows the formation of nano-films having nano-size structures with the average nanostructures size ~25, ~53, and ~45 nm for one, two, and three DPF shots, respectively. The nanostructures sizes and morphology of nano-films are consistent between the AFM and SEM analyses. XRD spectra confirms nano-sized La2O3 with an average grain size ~34, ~51, and ~42 nm for one, two, and three DPF shots, respectively. The electrical properties such as current-voltage and capacitance-voltage (C-V) characteristics of the Al-La2O3-Si metal-oxide- semiconductor (MOS) capacitor structure are measured. The current conduction mechanism of the MOS capacitors is also demonstrated. The C-V characteristics are further used to obtain the electrical parameters such as the dielectric constant, oxide thickness, flat-band capacitance, and flat-band voltage of the MOS capacitors. These measurements demonstrate significantly lower leakage currents without any commonly used annealing or doping, thereby revealing a significant improvement of the MOS nanoelectronic device performance due to the incorporation of the DPF-produced La2O3 nano-films.
Resumo:
An atmospheric microplasma jet produces three-dimensional (3D) microfluidic channels on dense arrays of vertically aligned carbon nanotubes, which confines Au nanodot aqueous solution. The resulting hybrid 3D nanostructure is exploited as an effective microscopic area-selective sensing platform based on surface-enhanced Raman scattering.
Resumo:
Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al2O3/SiO2 catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO2 layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.
Resumo:
Effective control of dense, high-quality carbon nanotube arrays using hierarchical multilayer catalyst patterns is demonstrated. Scanning/transmission electron microscopy, atomic force microscopy, Raman spectroscopy, and numerical simulations show that by changing the secondary and tertiary layers one can control the properties of the nanotube arrays. The arrays with the highest surface density of vertically aligned nanotubes are produced using a hierarchical stack of iron nanoparticles and alumina and silica layers differing in thickness by one order of magnitude from one another. The results are explained in terms of the catalyst structure effect on carbon diffusivity.
Resumo:
The advantages of using low-temperature plasma environments for postprocessing of dense nanotube arrays are shown by means of multiscale hybrid numerical simulations. By controlling plasma-extracted ion fluxes and varying the plasma and sheath parameters, one can selectively coat, dope, or functionalize different areas on nanotube surfaces. Conditions of uniform deposition of ion fluxes over the entire nanotube surfaces are obtained for different array densities. The plasma route enables a uniform processing of lateral nanotube surfaces in very dense (with a step-to-height ratio of 1:4) arrays, impossible via the neutral gas process wherein radical penetration into the internanotube gaps is poor. © 2006 American Institute of Physics.
Resumo:
Plasma transport in a hybrid dc vacuum arc plasma source for ion deposition and plasma immersion treatment is considered. It is found that external crossed electric and magnetic fields near the substrate can significantly reduce the relative amplitude of ion current fluctuations I-f at the substrate surface. In particular, I-f decreases with the applied magnetic field when the bias voltage exceeds 300 V, thus allowing one to reduce the deviations from the rated process parameters. This phenomenon can be attributed to an interaction between the metal-plasma jet from the arc source and the discharge plasma in the crossed fields. © 2006 American Institute of Physics.
Resumo:
Luminescent ZnO nanoparticles have been synthesized on silicon and quartz substrates under extremely non-equilibrium conditions of energetic ion condensation during the post-focus phase in a dense plasma focus (DPF) device. Ar+, O+, Zn+ and ZnO+ ions are generated as a result of interaction of hot and dense argon plasma focus with the surfaces of ZnO pellets placed at the anode. It is found that the sizes, structural and photoluminescence (PL) properties of the ZnO nanoparticles appear to be quite different on Si(1 0 0) and quartz substrates. The results of x-ray diffractometry and atomic force microscopy show that the ZnO nanoparticles are crystalline and range in size from 5-7 nm on Si(1 0 0) substrates to 10-38 nm on quartz substrates. Room-temperature PL studies reveal strong peaks related to excitonic bands and defects for the ZnO nanoparticles deposited on Si (1 0 0), whereas the excitonic bands are not excited in the quartz substrate case. Raman studies indicate the presence of E2 (high) mode for ZnO nanoparticles deposited on Si(1 0 0).
Resumo:
The claim that restorative justice emerged in response to the failings of the traditional criminal justice system is frequently made and rarely challenged in the restorative justice literature. It is stated unproblematically, as though it is an unassailable fact rather than a powerful truth claim, thereby positioning restorative justice as a natural, progressive and superior model of justice in comparison with the traditional criminal justice system. This truth claim therefore bestows restorative justice with a legitimacy that is difficult to challenge or refute. Drawing on a Foucaultian genealogy of restorative justice, this article seeks to destabilise the truth claim that restorative justice emerged in response to the failings of the criminal justice system. While the shortcomings of the traditional criminal justice system may provide a backdrop to the emergence of restorative justice, this article argues that such a possibility makes restorative justice a possibility rather than an inevitability.
Resumo:
Introduction Intervertebral stapling is a leading method of fusionless scoliosis treatment which attempts to control growth by applying pressure to the convex side of a scoliotic curve in accordance with the Hueter-Volkmann principle. In addition to that, staples have the potential to damage surrounding bone during insertion and subsequent loading. The aim of this study was to assess the extent of bony structural damage including epiphyseal injury as a result of intervertebral stapling using an in vitro bovine model. Materials and Methods Thoracic spines from 6-8 week old calves were dissected and divided into motion segments including levels T4-T11 (n=14). Each segment was potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37⁰C and 100% humidity, using moment control to a maximum 1.75 Nm with a loading rate of 0.3 Nm per second for 10 cycles. The segments were initially tested uninstrumented with data collected from the tenth load cycle. Next an anterolateral 4-prong Shape Memory Alloy (SMA) staple (Medtronic Sofamor Danek, USA) was inserted into each segment. Biomechanical testing was repeated as before. The staples were cut in half with a diamond saw and carefully removed. Micro-CT scans were performed and sagittal, transverse and coronal reformatted images were produced using ImageJ (NIH, USA).The specimens were divided into 3 grades (0, 1 and 2) according to the number of epiphyses damaged by the staple prongs. Results: There were 9 (65%) segments with grade 1 staple insertions and 5 (35%) segments with grade 2 insertions. There were no grade 0 staples. Grade 2 spines had a higher stiffness level than grade 1 spines, in all axes of movement, by 28% (p=0.004). This was most noted in flexion/extension with an increase of 49% (p=0.042), followed by non-significant change in lateral bending 19% (p=0.129) and axial rotation 8% (p=0.456) stiffness. The cross sectional area of bone destruction from the prongs was only 0.4% larger in the grade 2 group compared to the grade 1 group (p=0.961). Conclusion Intervertebral staples cause epiphyseal damage. There is a difference in stiffness between grade 1 and grade 2 staple insertion segments in flexion/extension only. There is no difference in the cross section of bone destruction as a result of prong insertion and segment motion.
Resumo:
This paper presents a novel three-phase to single-phase matrix converter (TSMC) based bi-directional inductive power transfer (IPT) system for vehicle-to-grid (V2G) applications. In contrast to existing techniques, the proposed technique which employs a TSMC to drive an 8th order high frequency resonant network, requires only a single-stage power conversion process to facilitate bi-directional power transfer between electric vehicles (EVs) and a three-phase utility power supply. A mathematical model is presented to demonstrate that both magnitude and direction of power flow can be controlled by regulating either relative phase angles or magnitudes of voltages generated by converters. The viability of the proposed mathematical model is verified using simulated results of a 10 kW bi-directional IPT system and the results suggest that the proposed system is efficient, reliable and is suitable for high power applications which require contactless power transfer.