741 resultados para Retrospective Data
Resumo:
Heterogeneous health data is a critical issue when managing health information for quality decision making processes. In this paper we examine the efficient aggregation of lifestyle information through a data warehousing architecture lens. We present a proof of concept for a clinical data warehouse architecture that enables evidence based decision making processes by integrating and organising disparate data silos in support of healthcare services improvement paradigms.
Resumo:
The prevalence of leg ulcers of is 0.12%–1.1% and >3,000 lower limb amputations are performed yearly in Australia due to non-healing leg or foot ulcers. Although evidence on leg ulcer management is available, a significant evidence-practice gap exists. To identify current leg ulcer management, a cross-sectional retrospective study was undertaken in Brisbane, Australia. A sample of 104 clients was recruited from a community specialist wound clinic and a tertiary hospital outpatient’s specialist wound clinic. All clients had an ulcer below their knee or on their foot for ≥4 weeks. Data were collected on ulcer care, health service usage and clinical history for the year prior to admission. On admission, participants reported having their ulcer for a median of 25 weeks (range 2-728 weeks); with 51% (53/104) reporting an ulcer duration of ≥24 weeks. Including the wound clinic, participants sought ulcer care from a median of 3 health care providers (range 2-7). General Practitioners provided ulcer care to 82% of participants. Nearly half (42%) had self-cared for their ulcer; 29% (30/104) received treatment by a community nurse. A gap was found between the community-based ulcer care experienced by this population and evidence-based guidelines in regards to assessment, management, advice, and referrals.
Resumo:
Identifying product families has been considered as an effective way to accommodate the increasing product varieties across the diverse market niches. In this paper, we propose a novel framework to identifying product families by using a similarity measure for a common product design data BOM (Bill of Materials) based on data mining techniques such as frequent mining and clus-tering. For calculating the similarity between BOMs, a novel Extended Augmented Adjacency Matrix (EAAM) representation is introduced that consists of information not only of the content and topology but also of the fre-quent structural dependency among the various parts of a product design. These EAAM representations of BOMs are compared to calculate the similarity between products and used as a clustering input to group the product fami-lies. When applied on a real-life manufacturing data, the proposed framework outperforms a current baseline that uses orthogonal Procrustes for grouping product families.
Resumo:
Interpolation techniques for spatial data have been applied frequently in various fields of geosciences. Although most conventional interpolation methods assume that it is sufficient to use first- and second-order statistics to characterize random fields, researchers have now realized that these methods cannot always provide reliable interpolation results, since geological and environmental phenomena tend to be very complex, presenting non-Gaussian distribution and/or non-linear inter-variable relationship. This paper proposes a new approach to the interpolation of spatial data, which can be applied with great flexibility. Suitable cross-variable higher-order spatial statistics are developed to measure the spatial relationship between the random variable at an unsampled location and those in its neighbourhood. Given the computed cross-variable higher-order spatial statistics, the conditional probability density function (CPDF) is approximated via polynomial expansions, which is then utilized to determine the interpolated value at the unsampled location as an expectation. In addition, the uncertainty associated with the interpolation is quantified by constructing prediction intervals of interpolated values. The proposed method is applied to a mineral deposit dataset, and the results demonstrate that it outperforms kriging methods in uncertainty quantification. The introduction of the cross-variable higher-order spatial statistics noticeably improves the quality of the interpolation since it enriches the information that can be extracted from the observed data, and this benefit is substantial when working with data that are sparse or have non-trivial dependence structures.
Resumo:
The Echology: Making Sense of Data initiative seeks to break new ground in arts practice by asking artists to innovate with respect to a) the possible forms of data representation in public art and b) the artist's role in engaging publics on environmental sustainability in new urban developments. Initiated by ANAT and Carbon Arts in 2011, Echology has seen three artists selected by National competition in 2012 for Lend Lease sites across Australia. In 2013 commissioning of one of these works, the Mussel Choir by Natalie Jeremijenko, began in Melbourne's Victoria Harbour development. This emerging practice of data - driven and environmentally engaged public artwork presents multiple challenges to established systems of public arts production and management, at the same time as offering up new avenues for artists to forge new modes of collaboration. The experience of Echology and in particular, the Mussel Choir is examined here to reveal opportunities for expansion of this practice through identification of the factors that lead to a resilient 'ecology of part nership' between stakeholders that include science and technology researchers, education providers, city administrators, and urban developers.
Resumo:
Discovering the means to prevent and cure schizophrenia is a vision that motivates many scientists. But in order to achieve this goal, we need to understand its neurobiological basis. The emergent metadiscipline of cognitive neuroscience fields an impressive array of tools that can be marshaled towards achieving this goal, including powerful new methods of imaging the brain (both structural and functional) as well as assessments of perceptual and cognitive capacities based on psychophysical procedures, experimental tasks and models developed by cognitive science. We believe that the integration of data from this array of tools offers the greatest possibilities and potential for advancing understanding of the neural basis of not only normal cognition but also the cognitive impairments that are fundamental to schizophrenia. Since sufficient expertise in the application of these tools and methods rarely reside in a single individual, or even a single laboratory, collaboration is a key element in this endeavor. Here, we review some of the products of our integrative efforts in collaboration with our colleagues on the East Coast of Australia and Pacific Rim. This research focuses on the neural basis of executive function deficits and impairments in early auditory processing in patients using various combinations of performance indices (from perceptual and cognitive paradigms), ERPs, fMRI and sMRI. In each case, integration of two or more sources of information provides more information than any one source alone by revealing new insights into structure-function relationships. Furthermore, the addition of other imaging methodologies (such as DTI) and approaches (such as computational models of cognition) offers new horizons in human brain imaging research and in understanding human behavior.