116 resultados para transport impact assessment
Resumo:
Broad, early definitions of sustainable development have caused confusion and hesitation among local authorities and planning professionals. This confusion has arisen because loosely defined principles of sustainable development have been employed when setting policies and planning projects, and when gauging the efficiencies of these policies in the light of designated sustainability goals. The question of how this theory-rhetoric-practice gap can be filled is the main focus of this chapter. It examines the triple bottom line approach–one of the sustainability accounting approaches widely employed by governmental organisations–and the applicability of this approach to sustainable urban development. The chapter introduces the ‘Integrated Land Use and Transportation Indexing Model’ that incorporates triple bottom line considerations with environmental impact assessment techniques via a geographic, information systemsbased decision support system. This model helps decision-makers in selecting policy options according to their economic, environmental and social impacts. Its main purpose is to provide valuable knowledge about the spatial dimensions of sustainable development, and to provide fine detail outputs on the possible impacts of urban development proposals on sustainability levels. In order to embrace sustainable urban development policy considerations, the model is sensitive to the relationship between urban form, travel patterns and socio-economic attributes. Finally, the model is useful in picturing the holistic state of urban settings in terms of their sustainability levels, and in assessing the degree of compatibility of selected scenarios with the desired sustainable urban future.
Resumo:
Barmah Forest virus (BFV) disease is the second most common mosquito-borne disease in Australia, but the linkages of the wetlands and climate zones with BFV transmission remain unclear. We aimed to examine the relationship between the wetlands, climate zones and BFV risk in Queensland, Australia. Data on the wetlands, climate zones, population and BFV cases for the period 1992 to 2008 were obtained from relevant government agencies. BFV risk was grouped as low-, medium- and high-level based on BFV incidence percentiles. The buffer zones around each BFV case were made using 1, 5, 10, 15, 20, 25 and 50 km distances. We performed a discriminant analysis to determine the differences between wetland classes and BFV risk within each climate zone. The discriminant analyses show that saline 1, riverine and saline tidal influence were the most significant contributors to BFV risk in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. These models had classification accuracies of 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV risk varies with wetland class and climate zone. The discriminant analysis is a useful tool to quantify the links between wetlands, climate zones and BFV risk.
Resumo:
This report presents the findings on a baseline study of Australia's community recycling enterprises(CREs). The study sought to document the activities and impacts of these enterprises and to understand the conditions under which they succeed. The purposes of the research were to generate evidence that can contribute to the development of practice and policy support for CREs, and to provide information that is useful to community groups wishing to establish new CREs. The study included a review of the existing literature in relation to CREs, an online survey of Australian CREs, and in-depth case studies of three CREs from various regions within Australia
Resumo:
Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This paper presents the development of a parallel Hybrid Electric Propulsion System (HEPS) on a small fixed-wing UAV incorporating an Ideal Operating Line (IOL) control strategy. A simulation model of an UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine were determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
Resumo:
The main objective of this paper is to describe the development of a remote sensing airborne air sampling system for Unmanned Aerial Systems (UAS) and provide the capability for the detection of particle and gas concentrations in real time over remote locations. The design of the air sampling methodology started by defining system architecture, and then by selecting and integrating each subsystem. A multifunctional air sampling instrument, with capability for simultaneous measurement of particle and gas concentrations was modified and integrated with ARCAA’s Flamingo UAS platform and communications protocols. As result of the integration process, a system capable of both real time geo-location monitoring and indexed-link sampling was obtained. Wind tunnel tests were conducted in order to evaluate the performance of the air sampling instrument in controlled nonstationary conditions at the typical operational velocities of the UAS platform. Once the remote fully operative air sampling system was obtained, the problem of mission design was analyzed through the simulation of different scenarios. Furthermore, flight tests of the complete air sampling system were then conducted to check the dynamic characteristics of the UAS with the air sampling system and to prove its capability to perform an air sampling mission following a specific flight path.
Resumo:
Multi-Objective optimization for designing of a benchmark cogeneration system known as CGAM cogeneration system has been performed. In optimization approach, the thermoeconomic and Environmental aspects have been considered, simultaneously. The environmental objective function has been defined and expressed in cost terms. One of the most suitable optimization techniques developed using a particular class of search algorithms known as; Multi-Objective Particle Swarm Optimization (MOPSO) algorithm has been used here. This approach has been applied to find the set of Pareto optimal solutions with respect to the aforementioned objective functions. An example of fuzzy decision-making with the aid of Bellman-Zadeh approach has been presented and a final optimal solution has been introduced.
Resumo:
Natural disasters can have adverse effect on human lives. To raise the awareness of research and better combat future events, it is important to identify recent research trends in the area of post disaster reconstruction (PDR). The authors used a three-round literature review strategy to study journal papers published in the last decade that are related to PDR with specific conditions using the Scopus search engine. A wide range of PDR related papers from a general perspective was examined in the first two rounds while the final round established 88 papers as target publications through visual examination of the abstracts, keywords and as necessary, main texts. These papers were analysed in terms of research origins, active researchers, research organisations, most cited papers, regional concerns, major themes and deliverables, for clues of the past trends and future directions. The need for appropriate PDR research is increasingly recognised. The publication number multiplied 5 times from 2002 to 2012. For PDR research with a construction perspective, the increase is sixfold. Developing countries such as those in Asia attract almost 50% researchers' attention for regional concerns while the US is the single most concentrated (24%) country. Africa is hardly represented. Researchers in developed countries lead in worldwide PDR research. This contrasts to the need for expertise in developing countries. Past works focused on waste management, stakeholder analysis, resourcing, infrastructure issue, resilience and vulnerability, reconstruction approach, sustainable reconstruction and governance issues. Future research should respond to resourcing, integrated development, sustainability and resilience building to cover the gaps. By means of a holistic summary and structured analysis of key patterns, the authors hope to provide a streamlined access to existing research findings and make predictions of future trends. They also hope to encourage a more holistic approach to PDR research and international collaborations.
Resumo:
This paper presents a review of existing and current developments and the analysis of Hybrid-Electric Propulsion Systems (HEPS) for small fixed-wing Unmanned Aerial Vehicles (UAVs). Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. One technology with potential in this area is with the use of HEPS. In this paper, information on the state-of-art technology in this field of research is provided. A description and simulation of a parallel HEPS for a small fixed-wing UAV by incorporating an Ideal Operating Line (IOL) control strategy is described. Simulation models of the components in a HEPS were designed in the MATLAB Simulink environment. An IOL analysis of an UAV piston engine was used to determine the most efficient points of operation for this engine. The results show that an UAV equipped with this HEPS configuration is capable of achieving a fuel saving of 6.5%, compared to the engine-only configuration.
Resumo:
The Climate Commission recently outlined the trend of major extreme weather events in different regions of Australia, including heatwaves, floods, droughts, bushfires, cyclones and storms. These events already impose an enormous health and financial burden onto society and are projected to occur more frequently and intensely. Unless we act now, further financial losses and increasing health burdens seem inevitable. We seek to highlight the major areas for interdisciplinary investigation, identify barriers and formulate response strategies.
Resumo:
This series of technical papers arose out of the action by a private entrepreneur to initiate a process beyond mere regulatory compliance in order to achieve best environmental practice at proposed large new visitor gateways to Australia’s Great Barrier Reef. Because of the complexity of issues involved at such urbanized downstream sites, the range of topics covered is wide – though still only those considered at this juncture to be of management priority. Included on this platform is one introductory paper reviewing the history of environmental management in the field in Queensland, and three papers which seek to appreciate the main techniques by which government contributes to the solutions viz. through the national park, threatened species list, and environmental impact assessment. The history paper was designed to allow the present series to be considered in broad context as well as performance to date. The work emphasizes that much of the fertile land that must be sustained nowadays lies in the province of the private sector, and that the initiative to create any new cost-effective paradigm in ecologically-sustainable practices lies mostly in their hands. In all instances, this strategic approach to large-scale property planning is through ecological design – using field case studies around the immediate biophysical catchment of the development, with attendant focus on the associated legal catchment (the actual development site) and the social catchment (the effective land managers). The first of these has given rise to a document termed a Regional Landscape Strategy, its implementation planned in concert with an Environmental Impact Assessment of the site and with a Strategic Regional Initiative (still being tested in the field) for community engagement. The first document takes into account the aspirations of government as expressed in its broad-scale regional plans.
Resumo:
The growing public concern about the complexity, cost and uncertain efficacy of the statuary environmental impact assessment process applying to large-scale projects in Queensland is reviewed. This is based on field data gathered over the past six years sat large-scale marina developments that access major environmental reserves along the coast. An ecological design proposal to broaden the process consisted with both government aspirations and regional ecological parameters - termed Regional Landscape Strategies - would allow the existing Environmental Impact Asessment to be modified alone potentially more practicable and effective lines.
Resumo:
Public concern about the safety of many forms of industrial technology are known to be linked to a range of factors including a perceived lack of confidence in regulatory decision making.1 The use of transgenic plants in agriculture may be seen as an issue that could generate similar concern. Criticism has been made about the completeness of knowledge on the potential for aberrant behaviour of genetically manipulated organisms (GMO's) in release environments, and the adequacy of existing pre‐release screening and assessment methodologies (Goldberg & Tjaden, 1990). Such comments are important because any perceived shortcomings in the pre-release assessment of GMO safety may lead to decreased public support of the technology -‐and the industry itself...
Resumo:
The extraction of coal seam gas (CSG) produces large volumes of potentially contaminated water. It has raised concerns about the environmental health impacts of the co-produced CSG water. In this paper, we review CSG water contaminants and their potential health effects in the context of exposure pathways in Queensland’s CSG basins. The hazardous substances associated with CSG water in Queensland include fluoride, boron, lead and benzene. The exposure pathways for CSG water are: (1) water used for municipal purposes, (2) recreational water activities in rivers, (3) occupational exposures, (4) water extracted from contaminated aquifers, and; (5) indirect exposure through the food chain. We recommend mapping of exposure pathways into communities in CSG regions to determine the potentially exposed populations in Queensland. Future efforts to monitor chemicals of concern and consolidate them into a central database will build the necessary capability to undertake a much needed environmental health impact assessment.
Resumo:
It is important that industries’ water interactions respect the human right to water. Historically, within the mining industry there has been a disconnect between the management of sites’ internal water interactions and the consequences of their external impacts, including human rights impacts. This poses a challenge for the mining industry as it attempts to put the Ruggie Guiding Principles for Business and Human Rights into practice, particularly as United Nations has recently recognised the human right to water. A technical framework such as the Minerals Council of Australia’s Water Accounting Framework (WAF) can help to bridge this disconnect and to integrate human rights considerations into business practice by connecting a site’s external and internal water interactions and by encouraging regular monitoring of performance. However, at present the connection is limited since the WAF lacks the capability to formalise a site’s social water context. This work presents the Social Water Assessment Protocol (SWAP), a scoping tool consisting of a set of questions organised into taxonomic themes that capture a site’s social water context and that can be combined with the WAF to better connect human rights with mine water interactions.