180 resultados para textured brushwork, light
Resumo:
The microstructure of YBa2Cu3O7-δ (YBCO) materials, melt-textured in air and quenched from the temperature range 900-990°C, has been characterized using a combination of x-ray diffractometry, optical microscopy, scanning electron microscopy, transmission electron microscopy, and energy dispersive x-ray spectrometry. BaCu2O2 and BaCuO2 were found to coexist in samples quenched from the temperature range 920-960°C. The formation of BaCu2O2 preceded the formation of YBCO. Once the YBCO had formed, BaCu2O2 was present at the solidification front filling the space between nearly parallel platelets of YBCO. Large Y2BaCuO5 particles at the solidification front appeared divided into smaller ones as a result of their dissolution in the liquid that quenched as BaCu2O2.
Resumo:
Driving on an approach to a signalized intersection while distracted is particularly dangerous, as potential vehicular conflicts and resulting angle collisions tend to be severe. Given the prevalence and importance of this particular scenario, the decisions and actions of distracted drivers during the onset of yellow lights are the focus of this study. Driving simulator data were obtained from a sample of 58 drivers under baseline and handheld mobile phone conditions at the University of Iowa - National Advanced Driving Simulator. Explanatory variables included age, gender, cell phone use, distance to stop-line, and speed. Although there is extensive research on drivers’ responses to yellow traffic signals, the examination has been conducted from a traditional regression-based approach, which does not necessary provide the underlying relations and patterns among the sampled data. In this paper, we exploit the benefits of both classical statistical inference and data mining techniques to identify the a priori relationships among main effects, non-linearities, and interaction effects. Results suggest that novice (16-17 years) and young drivers’ (18-25 years) have heightened yellow light running risk while distracted by a cell phone conversation. Driver experience captured by age has a multiplicative effect with distraction, making the combined effect of being inexperienced and distracted particularly risky. Overall, distracted drivers across most tested groups tend to reduce the propensity of yellow light running as the distance to stop line increases, exhibiting risk compensation on a critical driving situation.
Resumo:
Opening up a band gap and finding a suitable substrate material are two big challenges for building graphene-based nanodevices. Using state-of-the-art hybrid density functional theory incorporating long range dispersion corrections, we investigate the interface between optically active graphitic carbon nitride (g-C3N4) and electronically active graphene. We find an inhomogeneous planar substrate (g-C3N4) promotes electronrich and hole-rich regions, i.e., forming a well-defined electron−hole puddle, on the supported graphene layer. The composite displays significant charge transfer from graphene to the g-C3N4 substrate, which alters the electronic properties of both components. In particular, the strong electronic coupling at the graphene/g-C3N4 interface opens a 70 meV gap in g-C3N4-supported graphene, a feature that can potentially allow overcoming the graphene’s band gap hurdle in constructing field effect transistors. Additionally, the 2-D planar structure of g-C3N4 is free of dangling bonds, providing an ideal substrate for graphene to sit on. Furthermore, when compared to a pure g-C3N4 monolayer, the hybrid graphene/g-C3N4 complex displays an enhanced optical absorption in the visible region, a promising feature for novel photovoltaic and photocatalytic applications.
Resumo:
We demonstrated for the first time by large-scale ab initio calculations that a graphene/titania interface in the ground electronic state forms a charge-transfer complex due to the large difference of work functions between graphene and titania, leading to substantial hole doping in graphene. Interestingly, electrons in the upper valence band can be directly excited from graphene to the conduction band, that is, the 3d orbitals of titania, under visible light irradiation. This should yield well-separated electron−hole pairs, with potentially high photocatalytic or photovoltaic performance in hybrid graphene and titania nanocomposites. Experimental wavelength-dependent photocurrent generation of the graphene/titania photoanode demonstrated noticeable visible light response and evidently verified our ab initio prediction.
Resumo:
Biological validation of new radiotherapy modalities is essential to understand their therapeutic potential. Antiprotons have been proposed for cancer therapy due to enhanced dose deposition provided by antiproton-nucleon annihilation. We assessed cellular DNA damage and relative biological effectiveness (RBE) of a clinically relevant antiproton beam. Despite a modest LET (~19 keV/μm), antiproton spread out Bragg peak (SOBP) irradiation caused significant residual γ-H2AX foci compared to X-ray, proton and antiproton plateau irradiation. RBE of ~1.48 in the SOBP and ~1 in the plateau were measured and used for a qualitative effective dose curve comparison with proton and carbon-ions. Foci in the antiproton SOBP were larger and more structured compared to X-rays, protons and carbon-ions. This is likely due to overlapping particle tracks near the annihilation vertex, creating spatially correlated DNA lesions. No biological effects were observed at 28–42 mm away from the primary beam suggesting minimal risk from long-range secondary particles.
Resumo:
Background Low levels of physical activity and high levels of sedentary behavior (SB) are major public health concerns. This study was designed to develop and validate the 7-day Sedentary (S) and Light Intensity Physical Activity (LIPA) Log (7-day SLIPA Log), a self-report measure of specific daily behaviors. Method To develop the log, 62 specific SB and LIPA behaviors were chosen from the Compendium of Physical Activities. Face-to-face interviews were conducted with 32 sedentary volunteers to identify domains and behaviors of SB and LIPA. To validate the log, a further 22 sedentary adults were recruited to wear the GT3X for 7 consecutive days and nights. Results Pearson correlations (r) between the 7-day SLIPA Log and GT3X were significant for sedentary (r =.86, p < 0.001), for LIPA (r =.80, p < 0.001). Lying and sitting postures were positively correlated with GT3X output (r =.60 and r =.64, p < 0.001, respectively). No significant correlation was found for standing posture (r =.14, p = 0.53).The kappa values between the 7-day SLIPA Log and GT3X variables ranged from 0.09–0.61, indicating poor to good agreement. Conclusion The 7-day SLIPA Log is a valid self-report measure of SB and LIPA in specific behavioral domains.
Resumo:
A synthetic reevesite-like material has been shown to decolorize selected dyes and degrade phenolic contaminants photocatalytically in water when irradiated with visible light. This material can photoactively decolorize dyes such as bromophenol blue, bromocresol green, bromothymol blue, thymol blue and methyl orange in less than 15 min under visible light radiation in the absence of additional oxidizing agents. Conversely, phenolic compounds suc has phenol, p-chlorophenol and p-nitrophenol are photocat- alytically degraded in approximately 3hwith additional H2O2 when irradiated with visible light. These reactions offer potentially energy effective pathways for the removal of recalcitrant organic waste contaminants.
Resumo:
Madeira vine (Anredera cordifolia (Ten.) Steenis) is a climber in the angiosperm family Basellaceae. It is native to South America and has naturalised in Australia. It is regarded as a serious environmental weed because of the structural damage it causes to native vegetation. The present study, for the first time, documents anatomical and morphological traits of the leaves of A. cordifolia and considers their implications for its ecology and physiology. Plants were grown under three different light levels, and anatomical and morphological leaf characters were compared among light levels, among cohorts, and with documented traits of the related species, Basella alba L. Stomata were present on both the adaxial and abaxial sides of the leaf, with significantly more stomata on the abaxial side and under high light. This may account for the ability of this species to fix large amounts of carbon and rapidly respond to light gaps. The leaves had very narrow veins and no sclerenchyma, suggesting a low construction cost that is associated with invasive plants. There was no significant difference in any of the traits among different cohorts, which agrees with the claim that A. cordifolia primarily propagates vegetatively. The anatomy and morphology of A. cordifolia was similar to that of B. alba.
Resumo:
PURPOSE: We sought to determine whether conjunctival ultraviolet autofluorescence (UVAF), a biomarker of outdoor light exposure, is associated with myopia. METHODS: We performed a cross-sectional study on Norfolk Island and recruited individuals aged ≥ 15 years. Participants completed a sun-exposure questionnaire and underwent non-cycloplegic autorefraction. Conjunctival UVAF used a specially adapted electronic flash system fitted with UV-transmission filters (transmittance range 300-400 nm, peak 365 nm) as the excitation source. Temporal and nasal conjunctival UVAF was measured in both eyes using computerized photographic analysis with the sum referred to as "total UVAF." RESULTS: In 636 participants, prevalence of myopia decreased with an increasing quartile of total UVAF (P(trend) = 0.002). Median total UVAF was lower in subjects with myopia (spherical equivalent [SE] ≤ -1.0 diopter [D]) than participants without myopia: 16.6 mm(2) versus 28.6 mm(2), P = 0.001. In the multivariable model that adjusted for age, sex, smoking, cataract, height and weight, UVAF was independently associated with myopia (SE ≤ -1.0 D): odds ratio (OR) for total UVAF (per 10 mm(2)) was 0.81, 95% confidence interval (CI) 0.69 to 0.94, P = 0.007. UVAF was also significantly associated with myopia when analysis was restricted to subjects <50 years, and in moderate-severe myopia (SE ≤ -3.0 D). Prevalence of myopia decreased with increasing time outdoors (P(trend) = 0.03), but time outdoors was not associated with myopia on multivariable analysis. CONCLUSIONS: Study authors identified a protective association between increasing UVAF and myopia. The protective association of higher UVAF against myopia was stronger than that of increased levels of time spent outdoors as measured by this study's questionnaire. Future studies should investigate the association between UVAF and incident myopia, and its relationship to myopic progression.
Resumo:
The interaction between new two-dimensional carbon allotropes, i.e. graphyne (GP) and graphdiyne (GD), and light metal complex hydrides LiAlH4, LiBH4, and NaAlH4 was studied using density functional theory (DFT) incorporating long range van der Waals dispersion correction. The light metal complex hydrides show much stronger interaction with GP and GP than that with fullerene due to the well defined pore structure. Such strong interactions greatly affect the degree of charge donation from the alkali metal atom to AlH4 or BH4, consequently destabilizing the Al-H or B-H bonds. Compared to the isolated light metal complex hydride, the presence of GP or GD can lead to a significant reduction of the hydrogen removal energy. Most interestingly, the hydrogen removal energies for LiBHx on GP and with GD are found to be lowered at all the stages (x from 4 to 1) whereas the H-removal energy in the third stage is increased for LiBH4 on fullerene. In addition, the presence of uniformly distributed pores on GP and GD is expected to facilitate the dehydrogenation of light metal complex hydrides. The present results highlight new interesting materials to catalyze light metal complex hydrides for potential application as media for hydrogen storage. Since GD has been successfully synthesized in a recent experiment, we hope the present work will stimulate further experimental investigations in this direction.
Resumo:
The University of Queensland UltraCommuter concept is an ultra- light, low-drag, hybrid-electric sports coupe designed to minimize energy consumption and environmental impact while enhancing the performance, styling, features and convenience that motorists enjoy. This paper presents a detailed simulation study of the vehicle's performance and fuel economy using ADVISOR, including a detailed description of the component models and parameters assumed. Results from the study include predictions of a 0-100 kph acceleration time of ≺9s, and top speed of 170 kph, an electrical energy consumption of ≺67 Wh/km in ZEV mode and a petrol-equivalent fuel consumption of ≺2.5 L/100 km in charge-sustaining HEV mode. Overall, the results of the ADVISOR modelling confirm the UltraCommuter's potential to achieve high performance with high efficiency, and the authors look forward to a confirmation of these estimates following completion of the vehicle.
Resumo:
Technical images such as photography, film and video, are dependent on apparatuses for their production and dissemination, yet the apparatus itself is often hidden or obscured in the experience of the work and the discourse that surrounds it. This practice-led research identifies key practice strategies to foreground the apparatus both in the production of work and in its presentation. It therefore develops critical and generative strategies to explore and interrogate the workings of the 'apparatus-audience complex,' and the particular modes of spectatorship that this entails.
Resumo:
The body of the thesis contained two separate elements which made an original contribution to fundamental understanding in the areas of photocatalysis, chemical synthesis and water treatment. Research on chemical reactions catalyzed by noble metal nanoparticles (such as gold) or surface complex grafted metal oxides which can be driven by sunlight at ambient temperature and the second element on radioactive cesium (137Cs+) cations and iodine (125I-) anions recovery by the unique structural features of titanate nanostructures for firmly capture and safe storage; the works has been all published in journals that are rated at the top of their respective fields.
Resumo:
Background Degradation of the somatosensory system has been implicated in postural instability and increased falls risk for older people and Parkinson’s disease (PD) patients. Here we demonstrate that textured insoles provide a passive intervention that is an inexpensive and accessible means to enhance the somatosensory input from the plantar surface of the feet. Methods 20 healthy older adults (controls) and 20 participants with PD were recruited for the study. We evaluated effects of manipulating somatosensory information from the plantar surface of the feet using textured insoles. Participants performed standing tests, on two different surfaces (firm and foam), under three footwear conditions: 1) barefoot; 2) smooth insoles; and 3) textured insoles. Standing balance was evaluated using a force plate yielding data on the range of anterior-posterior and medial-lateral sway, as well as standard deviations for anterior-posterior and medial-lateral sway. Results On the firm surface with eyes open both the smooth and textured insoles reduced medial-lateral sway in the PD group to a similar level as the controls. Only the textured insole decreased medial-lateral sway and medial-lateral sway standard deviation in the PD group on both surfaces, with and without visual input. Greatest benefits were observed in the PD group while wearing the textured insoles, and when standing on the foam surface with eyes closed. Conclusions Data suggested that textured insoles may provide a low-cost means of improving postural stability in high falls-risk groups, such as people with PD.
Resumo:
White light strongly promotes dormancy in freshly harvested cereal grains, whereas dark and after-ripening have the opposite effect. We have analyzed the interaction of light and after-ripening on abscisic acid (ABA) and gibberellin (GA) metabolism genes and dormancy in barley (Hordeum vulgare ‘Betzes’). Analysis of gene expression in imbibed barley grains shows that different ABA metabolism genes are targeted by white light and after-ripening. Of the genes examined, white light promotes the expression of an ABA biosynthetic gene, HvNCED1, in embryos. Consistent with this result, enzyme-linked immunosorbent assays show that dormant grains imbibed under white light have higher embryo ABA content than grains imbibed in the dark. After-ripening has no effect on expression of ABA biosynthesis genes, but promotes expression of an ABA catabolism gene (HvABA8′OH1), a GA biosynthetic gene (HvGA3ox2), and a GA catabolic gene (HvGA2ox3) following imbibition. Blue light mimics the effects of white light on germination, ABA levels, and expression of GA and ABA metabolism genes. Red and far-red light have no effect on germination, ABA levels, or HvNCED1. RNA interference experiments in transgenic barley plants support a role of HvABA8′OH1 in dormancy release. Reduced HvABA8′OH1 expression in transgenic HvABA8′OH1 RNAi grains results in higher levels of ABA and increased dormancy compared to nontransgenic grains.