566 resultados para sustainable transport chain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of ‘sustainability’ has been pushed to the forefront of policy-making and politics as the world wakes up to the impacts of climate change and the effects of the modern urban lifestyle. Climate change has emerged to be one of the biggest challenges faced by our planet today, threatening both built and natural systems with long term consequences which may be irreversible. While there is a vast literature in the market on sustainable cities and urban development, there is currently none that bring together the vital issues of urban and regional development, and the planning, management and implementation of sustainable infrastructure. Large scale infrastructure plays an important part in modern society by not only promoting economic growth, but also by acting as a key indicator for it. More importantly, it supplies municipal/local amenity and services: water, electricity, social and communication facilities, waste removal, transport of people and goods, as well as numerous other services. For the most part, infrastructure has been built by teams lead by engineers who are more concerned about functionality than the concept of sustainability. However, it has been widely stated that current practices and lifestyle cannot continue if we are to leave a healthy living planet to not only the next generation, but also to the generations beyond. Therefore, in order to be sustainable, there are drastic measures that need to be taken. Current single purpose and design infrastructures that are open looped are not sustainable; they are too resource intensive, consume too much energy and support the consumption of natural resources at a rate that will exhaust their supply. Because of this, it is vital that modern society, policy-makers, developers, engineers and planners become pioneers in introducing and incorporating sustainable features into urban and regional infrastructure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A zero-energy home (ZEH) is a residential dwelling that generates as much energy annually from onsite renewable sources, as it consumes in its operation. A positive energy home (PEH) generates more energy than it consumes. The key design and construction elements, and costs and benefits of such buildings, are the subject of increasing research globally. Approaching this topic from the perspective of the role of such homes in the planning and development ‘supply chain’, this paper presents the measured outcomes of a PEH and discusses urban design implications. Using twelve months of detailed performance data of an occupied sub-tropical home, the paper analyses the design approach and performance outcomes that enable it to be classified as ‘positive energy’. Second, it analyses both the urban design strategies that assisted the house in achieving its positive energy status, and the impacts of such housing on urban design and infrastructure. Third, the triple bottom line implications are discussed from the viewpoint of both the individual household and the broader community. The paper concludes with recommendations for research areas required to further underpin and quantify the role of ZEHs and PEHs in enabling and supporting the economic, social and ecological sustainability of urban developments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report discusses findings of a case study into "Road Construction Safety" undertaken as a part of the retrospective analysis component of Sustainable Built Environment National Research Centre (SBEnrc) Project 2.7 Leveraging R&D investment for the Australian Built Environment. The Queensland Department of Transport and Main Roads (QTMR) has taken a leadership role in developing a safer working environment for road construction workers. In the past decades, a range of initiatives have been introduced to contribute to improved performance in this area. Several initiatives have been undertaken by QTMR as part of their overarching commitment to safety. Three such initiatives form the basis for this case study investigation, in order to better illustrate the nature of R&D investment and its impact on day-to-day operations and the supply chain. These are the development and implementation of: (i) the Mechanical Traffic Aid: (ii) the Thermal Imaging Camera; and (iii) the Trailer-based CCTV (camera). This case study should be read in conjunction with Part 1 of this suite of reports.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite of a significant contribution of transport sector in the global economy and society, it is one of the largest sources of global energy consumption, green house gas emissions and environmental pollutions. A complete look onto the whole life cycle environmental inventory of this sector will be helpful to generate a holistic understanding of contributory factors causing emissions. Previous studies were mainly based on segmental views which mostly compare environmental impacts of different modes of transport, but very few consider impacts other than the operational phase. Ignoring the impacts of non-operational phases, e.g., manufacture, construction, maintenance, may not accurately reflect total contributions on emissions. Moreover an integrated study for all motorized modes of road transport is also needed to achieve a holistic estimation. The objective of this study is to develop a component based life cycle inventory model which considers impacts of both operational and non-operational phases of the whole life as well as different transport modes. In particular, the whole life cycle of road transport has been segmented into vehicle, infrastructure, fuel and operational components and inventories have been conducted on each component. The inventory model has been demonstrated using the road transport of Singapore. Results show that total life cycle green house gas emissions from the road transport sector of Singapore is 7.8 million tons per year, among which operational phase and non-operational phases contribute about 55% and about 45%, respectively. Total amount of criteria air pollutants are 46, 8.5, 33.6, 13.6 and 2.6 thousand tons per year for CO, SO2, NOx, VOC and PM10, respectively. From the findings, it can be deduced that stringent government policies on emission control measures have a significant impact on reducing environmental pollutions. In combating global warming and environmental pollutions the promotion of public transport over private modes is an effective sustainable policy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Commonwealth Department of Industry, Science and Resources is identifying best practice case study examples of supply chain management within the building and construction industry to illustrate the concepts, innovations and initiatives that are at work. The projects provide individual enterprises with examples of how to improve their performance, and the competitiveness of the industry as a whole.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the Australian general public, there are increasing concerns about environmental issues. Accordingly, sustainability in the housing industry is also becoming a priority on the development agenda. However, putting the principles of ecological sustainability into practice within social and economic development requires intensive involvement of major stakeholders such as governments, developers, builders, consumers and a range of other professionals. Establishing a sustainable value entails asymmetric life-cycle returns, making it important for major stakeholders to appreciate the benefits of this new agenda not only for the individual businesses but also for other supply chain partners. This context warrants the study to promote collective benefits for key stakeholders by establishing a mutual-benefit framework for sustainable housing implementation. A research was carried out in the hope to establish a mutual-benefit framework by investigating challenges of achieving benefits (CABs) from sustainable housing development in a multi-stakeholder context. In the research work reported in this article, a comparative questionnaire study was first conducted among seven stakeholder groups in the Australian housing industry, to examine the importance and inter-relationships of CABs. In-depth interviews then furthered the survey findings with a focus on stakeholder diversity. The synthesized findings of the survey and interview study lead to the identification of 12 critical mutual-benefit factors and their mutual influence. Based on such a platform, a systematic framework is developed with the aid of Interpretive Structural Modelling (ISM), to identify the patterns of stakeholder benefit materialisation, suggest the priority of critical factors and provide related stakeholder-specific action guide for sustainable housing implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to promote green building practice in Australia, the Green Building Council of Australia (GBCA) launched the Green Star rating tools for various types of buildings built since 2003. Of these, the Green Star-Education rating tool addresses sustainability issues during the design and construction phrases of education facility development. It covers a number of categories, including Management, Indoor Environment Quality, Energy, Transport, Water, Materials, Land Use & Ecology, Emissions and Innovation. This paper reviews the use of the Green Star system in Australian education facilities construction and the potential challenges associated with Green Star- Education implementation. Score sheets of 34 education projects across Australia that achieved Green Star certification were collected and analysed. The percentage of green star points obtained within each category and sub-category (credits) for each project were analysed to illustrate the achievement of credits. The results show that management-related credits and ecology-related credits are the easiest and most difficult to obtain respectively. The study also indicted that 6 Green Star education projects obtained particularly high percentages in the Innovation category. The investigation of points obtained in each category provides prospective Green Star applicants with insights into credit achievement for future projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strong regulatory pressure and rising public awareness on environmental issues will continue to influence the market demand for sustainable housing for years to come. Despite this potential, the voluntary uptake rate of sustainable practices is not as high as expected within the new built housing industry. This is in contrast to the influx of emerging building technologies, new materials and innovative designs as showcased in office buildings and exemplar homes worldwide. One of the possible reasons for this under-performance is that key stakeholders such as developers, builders and consumers do not fully understand and appreciate the related challenges, risks and opportunities of pursuing sustainability. Therefore, in their professional and business activities, they may not be able to see the tangible and mutual benefits that sustainable housing may bring. This research investigates the multiple challenges to achieving benefits (CABs) from sustainable housing development, and links these factors to the characteristics of key stakeholders in the housing supply chain. It begins with a comparative survey study among seven stakeholder groups in the Australian housing industry, in order to examine the importance and interrelationships of CABs. In-depth interviews then further explore the survey findings with a focus on stakeholder diversity, which leads to the identification of 12 critical mutual-benefit factors and their interrelationship. Based on such a platform, a mutual-benefit framework is developed with the aid of Interpretive Structure Modelling, to identify the patterns of stakeholder benefit materialisation, suggest the priority of critical factors and provide related stakeholder-specific action guidelines for sustainable housing implementation. The study concludes with a case study of two real-life housing projects to test the application of the mutual-benefit framework for improvement. This framework will lead to a shared value of sustainability among stakeholders and improved stakeholder collaboration, which in turn help to break the "circle of blame" for the current under-performance of sustainable housing implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infrastructure forms a vital component in supporting today’s way of life and has a significant role or impact on economic, environmental and social outcomes of the region around it. The design, construction and operation of such assets are a multi-billion dollar industry in Australia alone. Another issue that will play a major role in our way life is that of climate change and the greater concept of sustainability. With limited resources and a changing natural world it is necessary for infrastructure to be developed and maintained in a manner that is sustainable. In order to achieve infrastructure sustainability in operations it is necessary for there to be: a sustainability assessment scheme that provides a scientifically sound and realistic approach to measuring an assets level of sustainability; and, systems and tools to support the making of decisions that result in sustainable outcomes by providing feedback in a timely manner. Having these in place will then help drive the consideration of sustainability during the decision making process for infrastructure operations and maintenance. In this paper we provide two main contributions; a comparison and review of sustainability assessment schemes for infrastructure and their suitability for use in the operations phase; and, a review of decision support systems/tools in the area of infrastructure sustainability in operations. For this paper, sustainability covers not just the environment, but also finance/economic and societal/community aspects as well. This is often referred to as the Triple Bottom Line and forms one of the three dimensions of corporate sustainability [Stapledon, 2004].