432 resultados para surface cutting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrathin films of a poly(styrene)-block-poly(2-vinylpyrindine) diblock copolymer (PS-b-P2VP) and poly(styrene)-block-poly(4-vinylpyrindine) diblock copolymer (PS-b-P4VP) were used to form surface-induced nanopattern (SINPAT) on mica. Surface interaction controlled microphase separation led to the formation of chemically heterogeneous surface nanopatterns on dry ultrathin films. Two distinct nanopatterned surfaces, namely, wormlike and dotlike patterns, were used to investigate the influence of topography in the nanometer range on cell adhesion, proliferation, and migration. Atomic force microscopy was used to confirm that SINPAT was stable under cell culture conditions. Fibroblasts and mesenchymal progenitor cells were cultured on the nanopatterned surfaces. Phase contrast and confocal laser microscopy showed that fibroblasts and mesenchymal progenitor cells preferred the densely spaced wormlike patterns. Atomic force microscopy showed that the cells remodelled the extracellular matrix differently as they migrate over the two distinctly different nanopatterns

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. To measure tear film surface quality in healthy and dry eye subjects using three noninvasive techniques of tear film quality assessment and to establish the ability of these noninvasive techniques to predict dry eye. METHODS. Thirty four subjects participated in the study, and were classified as dry eye or normal, based on standard clinical assessments. Three non-invasive techniques were applied for measurement of tear film surface quality: dynamic-area high-speed videokeratoscopy (HSV), wavefront sensing (DWS) and lateral shearing interferometry (LSI). The measurements were performed in both natural blinking conditions (NBC) and in suppressed blinking conditions (SBC). RESULTS. In order to investigate the capability of each method to discriminate dry eye subjects from normal subjects, the receiver operating curve (ROC) was calculated and then the area under the curve (AUC) was extracted. The best result was obtained for the LSI technique (AUC=0.80 in SBC and AUC=0.73 in NBC), which was followed by HSV (AUC=0.72 in SBC and AUC=0.71 in NBC). The best result for DWS was AUC=0.64 obtained for changes in vertical coma in suppressed blinking conditions, while for normal blinking conditions the results were poorer. CONCLUSIONS. Non-invasive techniques of tear film surface assessment can be used for predicting dry eye and this can be achieved in natural blinking as well as suppressed blinking conditions. In this study, LSI showed the best detection performance, closely followed by the dynamic-area HSV. The wavefront sensing technique was less powerful, particularly in natural blinking conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are several noninvasive techniques for assessing the kinetics of tear film, but no comparative studies have been conducted to evaluate their efficacies. Our aim is to test and compare techniques based on high-speed videokeratoscopy (HSV), dynamic wavefront sensing (DWS), and lateral shearing interferometry (LSI). Algorithms are developed to estimate the tear film build-up time TBLD, and the average tear film surface quality in the stable phase of the interblink interval TFSQAv. Moderate but significant correlations are found between TBLD measured with LSI and DWS based on vertical coma (Pearson's r2=0.34, p<0.01) and higher order rms (r2=0.31, p<0.01), as well as between TFSQAv measured with LSI and HSV (r2=0.35, p<0.01), and between LSI and DWS based on the rms fit error (r2=0.40, p<0.01). No significant correlation is found between HSV and DWS. All three techniques estimate tear film build-up time to be below 2.5 sec, and they achieve a remarkably close median value of 0.7 sec. HSV appears to be the most precise method for measuring tear film surface quality. LSI appears to be the most sensitive method for analyzing tear film build-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater is increasingly recognised as an important yet vulnerable natural resource, and a key consideration in water cycle management. However, communication of sub-surface water system behaviour, as an important part of encouraging better water management, is visually difficult. Modern 3D visualisation techniques can be used to effectively communicate these complex behaviours to engage and inform community stakeholders. Most software developed for this purpose is expensive and requires specialist skills. The Groundwater Visualisation System (GVS) developed by QUT integrates a wide range of surface and sub-surface data, to produce a 3D visualisation of the behaviour, structure and connectivity of groundwater/surface water systems. Surface data (elevation, surface water, land use, vegetation and geology) and data collected from boreholes (bore locations and subsurface geology) are combined to visualise the nature, structure and connectivity of groundwater/surface water systems. Time-series data (water levels, groundwater quality, rainfall, stream flow and groundwater abstraction) is displayed as an animation within the 3D framework, or graphically, to show water system condition changes over time. GVS delivers an interactive, stand-alone 3D Visualisation product that can be used in a standard PC environment. No specialised training or modelling skills are required. The software has been used extensively in the SEQ region to inform and engage both water managers and the community alike. Examples will be given of GVS visualisations developed in areas where there have been community concerns around groundwater over-use and contamination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to quantify exposure to particles emitted by wood-fired ovens in pizzerias. Overall, 15 microenvironments were chosen and analyzed in a 14-month experimental campaign. Particle number concentration and distribution were measured simultaneously using a Condensation Particle Counter (CPC), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS). The surface area and mass distributions and concentrations, as well as the estimation of lung deposition surface area and PM1 were evaluated using the SMPS-APS system with dosimetric models, by taking into account the presence of aggregates on the basis of the Idealized Aggregate (IA) theory. The fraction of inhaled particles deposited in the respiratory system and different fractions of particulate matter were also measured by means of a Nanoparticle Surface Area Monitor (NSAM) and a photometer (DustTrak DRX), respectively. In this way, supplementary data were obtained during the monitoring of trends inside the pizzerias. We found that surface area and PM1 particle concentrations in pizzerias can be very high, especially when compared to other critical microenvironments, such as the transport hubs. During pizza cooking under normal ventilation conditions, concentrations were found up to 74, 70 and 23 times higher than background levels for number, surface area and PM1, respectively. A key parameter is the oven shape factor, defined as the ratio between the size of the face opening in respect

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, two ideal formation models of serrated chips, the symmetric formation model and the unilateral right-angle formation model, have been established for the first time. Based on the ideal models and related adiabatic shear theory of serrated chip formation, the theoretical relationship among average tooth pitch, average tooth height and chip thickness are obtained. Further, the theoretical relation of the passivation coefficient of chip's sawtooth and the chip thickness compression ratio is deduced as well. The comparison between these theoretical prediction curves and experimental data shows good agreement, which well validates the robustness of the ideal chip formation models and the correctness of the theoretical deducing analysis. The proposed ideal models may have provided a simple but effective theoretical basis for succeeding research on serrated chip morphology. Finally, the influences of most principal cutting factors on serrated chip formation are discussed on the basis of a series of finite element simulation results for practical advices of controlling serrated chips in engineering application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermally activated Palygorskite (Pg) has been found to be a good adsorbent material for ammonia (NH3) and sulfur dioxide (SO2). This research investigated the effect of thermal treatment on pore structure and surface acid-alkali properties of Pg through the adsorption-desorption of NH3 and SO2. The results showed that, up to 200 °C, the adsorption of NH3 on Pg was significantly higher than SO2. This was due to NH3 being adsorbed in the internal surface of Pg and forming hydrogen bonds (H-bonds) with coordinated water. The increase in thermal treatment temp. from 150 to 550 °C, showed a gradual decrease in the no. of surface acid sites, while the no. of surface alk. sites increased from 200 to 400 °C. The change of surface acidity-alk. sites is due to the collapse of internal channels of Pg and desorption of different types of hydroxyls assocd. with the Pg structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To date, there have been no measuring techniques available that could clearly identify all phases of tear film surface kinetics in one interblink interval. ----- ----- Methods: Using a series of cases, we show that lateral shearing interferometry equipped with a set of robust parameter estimation techniques is able to characterize up to five different phases of tear film surface kinetics that include: (i) initial fast tear film build-up phase, (ii) further slower tear film build-up phase, (iii) tear film stability, (iv) tear film thinning, and (v), after a detected break-up, subsequent tear film deterioration. ----- ----- Results: Several representative examples are given for estimating tear film surface kinetics in measurements in which the subjects were asked to blink and keep their eyes open as long as they could. ----- ----- Conclusions: Lateral shearing interferometry is a noninvasive technique that provides means for temporal characterization of tear film surface kinetics and the opportunity for the analysis of the two-step tear film build-up process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with some plane strain and axially symmetric free surface problems which arise in the study of static granular solids that satisfy the Coulomb-Mohr yield condition. Such problems are inherently nonlinear, and hence difficult to attack analytically. Given a Coulomb friction condition holds on a solid boundary, it is shown that the angle a free surface is allowed to attach to the boundary is dependent only on the angle of wall friction, assuming the stresses are all continuous at the attachment point, and assuming also that the coefficient of cohesion is nonzero. As a model problem, the formation of stable cohesive arches in hoppers is considered. This undesirable phenomena is an obstacle to flow, and occurs when the hopper outlet is too small. Typically, engineers are concerned with predicting the critical outlet size for a given hopper and granular solid, so that for hoppers with outlets larger than this critical value, arching cannot occur. This is a topic of considerable practical interest, with most accepted engineering methods being conservative in nature. Here, the governing equations in two limiting cases (small cohesion and high angle of internal friction) are considered directly. No information on the critical outlet size is found; however solutions for the shape of the free boundary (the arch) are presented, for both plane and axially symmetric geometries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM), a molecular dynamics (MD) simulation is performed to study the single-crystal copper nanowire with surface defects through tension. The tension simulations for nanowire without defect are first carried out under different temperatures, strain rates and time steps and then surface defect effects for nanowire are investigated. The stress-strain curves obtained by the MD simulations of various strain rates show a rate below 1 x 10(9) s-1 will exert less effect on the yield strength and yield point, and the Young's modulus is independent of strain rate. a time step below 5 fs is recommend for the atomic model during the MD simulation. It is observed that high temperature leads to low Young's modulus, as well as the yield strength. The surface defects on nanowires are systematically studied in considering different defect orientations. It is found that the surface defect serves as a dislocation source, and the yield strength shows 34.20% decresse with 45 degree surface defect. Both yield strength and yield point are significantly influenced by the surface defects, except the Young's modulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-dimensional free surface flow of a finite-depth fluid into a horizontal slot is considered. For this study, the effects of viscosity and gravity are ignored. A generalised Schwarz-Christoffel mapping is used to formulate the problem in terms of a linear integral equation, which is solved exactly with the use of a Fourier transform. The resulting free surface profile is given explicitly in closed-form.