123 resultados para supported employees
Resumo:
Infrared spectra are reported of formic acid adsorbed at 300 K on a reduced copper catalyst (Cu/SiO2) and a copper surface which had been oxidised by exposure to nitrous oxide. Formic acid was weakly adsorbed on the silica support. Ligation of formic acid to the copper surface occurred only on the reduced catalyst. Dissociative adsorption resulted in the formation of unidentate formate on the oxidised catalyst. The presence of reduced copper metal instigated a rapid reorientation to a bidentate formate species.
Resumo:
FTIR spectra are reported of CO adsorbed on silica-supported copper catalysts prepared from copper(II) acetate monohydrate. Fully oxidised catalyst gave bands due to CO on CuO, isolated Cu2+ cations on silica and anion vacancy sites in CuO. The highly dispersed CuO aggregated on reduction to metal particles which gave bands due to adsorbed CO characteristic of both low-index exposed planes and stepped sites on high-index planes. Partial surface oxidation with N2O or H2O generated Cu+ adsorption sites which were slowly reduced to Cu° by CO at 300 K. Surface carbonate initially formed from CO was also slowly depleted with time with the generation of CO2. The results are consistent with adsorbed carbonate being an intermediate in the water-gas shift reaction of H2O and CO to H2 and CO2.
Resumo:
FTIR spectra are reported of CO, CO2, H2 and H2O on silica-supported potassium, copper and potassium-copper catalysts. Adsorption of CO on a potassium/silica catalyst resulted in the formation of complexed CO moieties. Whereas exposure of CO2 to the same catalyst produced bands ascribed to CO2 -, bidentate carbonate and complexed CO species. Fully oxidised copper/silica surfaces gave bands due to CO on CuO and isolated Cu2+ cations on silica. Addition of potassium to this catalyst removed a peak attributed to CO adsorption on isolated Cu2+ cations and red-shifted the maximum ascribed to CO adsorbed on CuO. For a reduced copper/silica catalyst bands due to adsorbed CO on both high and low index planes were red-shifted by 10 cm-1 in the presence of potassium, although the strength of the Cu - CO bond did not appear to be increased concomitantly. An explanation in terms of an electrostatic effect between potassium and adsorbed CO is forwarded. A small maximum at ca. 1510 cm-1 for the reduced catalyst increased substantially upon exposing CO to a reoxidised promoted catalyst. Correspondingly, CO2 adsorption allowed the identification of two distinct carboxylate species, one of which was located at an interfacial site between copper and potassium oxide. Carboxylate species reacted with hydrogen at 295 K, on a reduced copper surface, to produce predominantly unidentate formate on potassium. In contrast no interaction was detected on a reoxidised copper catalyst at 295 K until a fraction of the copper surface was in a reduced state. Furthermore the interaction of polar water molecules with carboxylate species resulted in a perturbation of this structure which gave lower C----O stretching frequencies.
Resumo:
There is increasing concern about the impact of employees’ alcohol and other drug (AOD) consumption on workplace safety, particularly within the construction industry. No known study has scientifically evaluated the relationship between the use of drugs and alcohol and safety impacts in construction, and there has been only limited adoption of nationally coordinated strategies, supported by employers and employees to render it socially unacceptable to arrive at a construction workplace with impaired judgment from AODs. This research aims to scientifically evaluate the use of AODs within the Australian construction industry in order to reduce the potential resulting safety and performance impacts and engender a cultural change in the workforce. Using the Alcohol Use Disorders Identification Test (AUDIT), the study will adopt both quantitative and qualitative methods to evaluate the extent of general AOD use in the industry. Results indicate that a proportion of the construction sector may be at risk of hazardous alcohol consumption. A total of 286 respondents (58%) scored above the cut-off score for risky alcohol use with 43 respondents (15%) scoring in the significantly ‘at risk’ category. Other drug use was also identified as a major issue that must be addressed. Results support the need for evidence-based, preventative educational initiatives that are tailored specifically to the construction industry.
Resumo:
The CO2-methane reformation reaction over Ni/SiO2 catalysts has been extensively studied using a range of temperature-programmed techniques and characterisation of the catalysts by thermogravimetry (TG), X-ray diffraction (XRD) and electron microscopy (TEM). The results indicate a strong correlation between the microstructure of the catalyst and its performance. The role of both CO2 and CH4 in the reaction has been investigated and the role of methyl radicals in the reaction mechanism highlighted. A reaction mechanism involving dissociatively adsorbed CO2 and methyl radicals has been proposed.
Resumo:
Carbon dioxide reforming of methane produces synthesis gas with a low hydrogen to carbon monoxide ratio, which is desirable for many industrial synthesis processes. This reaction also has very important environmental implications since both methane and carbon dioxide contribute to the greenhouse effect. Converting these gases into a valuable feedstock may significantly reduce the atmospheric emissions of CO2 and CH4. In this paper, we present a comprehensive review on the thermodynamics, catalyst selection and activity, reaction mechanism, and kinetics of this important reaction. Recently, research has centered on the development of catalysts and the feasible applications of this reaction in industry. Group VIII metals supported on oxides are found to be effective for this reason. However, carbon deposition causing catalyst deactivation is the major problem inhibiting the industrial application of the CO2/CH4 reaction. Ni-based catalysts impregnated on certain supports show carbon-free operation and thus attract much attention. To develop an effective catalyst for CO2 reforming of CH4 and accelerate the commercial application of the reaction, the following are identified to be the most important areas for future work: (1) selection of metal and support and studying the effect of their interaction on catalyst activity; (2) the effect of different promoter on catalyst activity; (3) the reaction mechanism and kinetics; and (4) pilot reactor performance and scale-up operation.
Resumo:
The effect of oxidation and reduction conditions upon the morphology of polycrystalline silver catalysts has been investigated by means of in situ Fourier-transform infrared (FTIR) spectroscopy. Characterization of the sample was achieved by inspection of the νas(COO) band profile of adsorbed formate, recorded after dosing with formic acid at ambient temperature. Evidence was obtained for the existence of a silver surface reconstructed by the presence of subsurface oxygen in addition to the conventional family of Ag(111) and Ag(110) crystal faces. Oxidation at 773 K facilitated the reconstruction of silver planes due to the formation of subsurface oxygen species. Prolonged oxygen treatment at 773 K also caused particle fragmentation as a consequence of excessive oxygen penetration of the silver catalyst at defect sites. It was also deduced that the presence of oxygen in the gas phase stabilized the growth of silver planes which could form stronger bonds with oxygen. In contrast, high-temperature thermal treatment in vacuum induced significant sintering of the silver catalyst. Reduction at 773 K resulted in substantial quantities of dissolved hydrogen (and probably hydroxy species) in the bulk silver structure. Furthermore, enhanced defect formation in the catalyst was also noted, as evidenced by the increased concentration of formate species associated with oxygen-reconstructed silver faces.
Resumo:
The QUT Outdoor Worker Sun Protection (OWSP) project undertook a comprehensive applied health promotion project to demonstrate the effectiveness of sun protection measures which influence high risk outdoor workers in Queensland to adopt sun safe behaviours. The three year project (2010-2013) was driven by two key concepts: 1) The hierarchy of control, which is used to address risks in the workplace, advocates for six control measures that need to be considered in order of priority (refer to Section 3.4.2); and 2) the Ottawa Charter which recommends five action means to achieve health promotion (refer to Section 2.1). The project framework was underpinned by a participatory action research approach that valued peoples’ input, took advantage of existing skills and resources, and stimulated innovation (refer to Section 4.2). Fourteen workplaces (small and large) with a majority outdoor workforce were recruited across regional Queensland (Darling Downs, Northwest, Mackay and Cairns) from four industries types: 1) building and construction, 2) rural and farming, 3) local government, and 4) public sector. A workplace champion was identified at each workplace and was supported (through resource provision, regular contact and site visits) over a 14 to 18 month intervention period to make sun safety a priority in their workplace. Employees and employers were independently assessed for pre- and postintervention sun protection behaviours. As part of the intervention, an individualised sun safety action plan was developed in conjunction with each workplace to guide changes across six key strategy areas including: 1) Policy (e.g., adopt sun safety practices during all company events); 2) Structural and environmental (e.g., shade on worksites; eliminate or minimise reflective surfaces); 3) Personal protective equipment (PPE) (e.g., trial different types of sunscreens, or wide-brimmed hats); 4) Education and awareness (e.g., include sun safety in inductions and toolbox talks; send reminder emails or text messages to workers);5) Role modelling (e.g., by managers, supervisors, workplace champions and mentors); and 6) Skin examinations (e.g., allow time off work for skin checks). The participatory action process revealed that there was no “one size fits all” approach to sun safety in the workplace; a comprehensive, tailored approach was fundamental. This included providing workplaces with information, resources, skills, know how, incentives and practical help. For example, workplaces engaged in farming complete differing seasonal tasks across the year and needed to prepare for optimal sun safety of their workers during less labour intensive times. In some construction workplaces, long pants were considered a trip hazard and could not be used as part of a PPE strategy. Culture change was difficult to achieve and workplace champions needed guidance on the steps to facilitate this (e.g., influencing leaders through peer support, mentoring and role modelling). With the assistance of the project team the majority of workplaces were able to successfully implement the sun safety strategies contained within their action plans, up skilling them in the evidence for sun safety, how to overcome barriers, how to negotiate with all relevant parties and assess success. The most important enablers to the implementation of a successful action plan were a pro-active workplace champion, strong employee engagement, supportive management, the use of highly visual educational resources, and external support (provided by the project team through regular contact either directly through phone calls or indirectly through emails and e-newsletters). Identified barriers included a lack of time, the multiple roles of workplace champions, (especially among smaller workplaces), competing issues leading to a lack of priority for sun safety, the culture of outdoor workers, and costs or budgeting constraints. The level of sun safety awareness, knowledge, and sun protective behaviours reported by the workers increased between pre-and post-intervention. Of the nine sun protective behaviours that were assessed, the largest changes reported included a 26% increase in workers who “usually or always” wore a broad-brimmed hat, a 20% increase in the use of natural shade, a 19% increase in workers wearing long-sleeved collared shirts, and a 16% increase in workers wearing long trousers.
Resumo:
Worksite wellness efforts can generate enormous health-care savings. Many of the methods available to obtain health and wellness measures can be confusing and lack clarity; for example it can be difficult to understand if measures are appropriate for individuals or population health. Come along and enjoy a hands-on learning experience about measures and better understanding health and wellness outcomes from baseline, midway and beyond.
Resumo:
This project explores employees’ adoption of Web 2.0 within organisations. It shows that the adoption of Web 2.0 is a challenging and dynamic process that changes over time. The adoption is, also, influenced by a number of interrelated issues including: People Traits, Social Influence, Trust, Technological Attributes, Relevance of Web 2.0, Web 2.0 Maturity, Organisational Support, and Organisational Practice.
Resumo:
Cell-based therapy is considered a promising approach to achieving predictable periodontal regeneration. In this study, the regenerative potential of cell sheets derived from different parts of the periodontium (gingival connective tissue, alveolar bone and periodontal ligament) were investigated in an athymic rat periodontal defect model. Periodontal ligament (PDLC), alveolar bone (ABC) and gingival margin-derived cells (GMC) were obtained from human donors. The osteogenic potential of the primary cultures was demonstrated in vitro. Cell sheets supported by a calcium phosphate coated melt electrospun polycaprolactone (CaP-PCL) scaffold were transplanted to denuded root surfaces in surgically created periodontal defects, and allowed to heal for 1 and 4 weeks. The CaP-PCL scaffold alone was able to promote alveolar bone formation within the defect after 4 weeks. The addition of ABC and PDLC sheets resulted in significant periodontal attachment formation. The GMC sheets did not promote periodontal regeneration on the root surface and inhibited bone formation within the CaP-PCL scaffold. In conclusion, the combination of either PDLC or ABC sheets with a CaP-PCL scaffold could promote periodontal regeneration, but ABC sheets were not as effective as PDLC sheets in promoting new attachment formation.
Resumo:
Major changes to regulations, funding and consumer demand in the Australian aged care industry are driving not for profits in this sector to reshape and rethink the services they offer and the ways in which they deliver their services to consumers. Many not for profit organisations facing these new challenges are also facing organisational cultural barriers in the development and implementation of innovative strategies. This paper presents a case study where one organisation, using design led innovation, explored consumer insights and employee values to find new ways to facilitate change.
Resumo:
This thesis is an innovative study for organic synthesis using supported gold nanoparticles as photocatalysts under visible light irradiation. It especially examines a novel green process for efficient hydroamination of alkynes with amines. The investigation of other traditional reduction and oxidation reactions also adds significantly to the knowledge of gold nanoparticles and titania nanofibres as photocatalysts for organic synthesis.
Resumo:
Sandwich panels comprising steel facings and a polystyrene foam core are increasingly used as roof and wall claddings in buildings in Australia. When they are subjected to loads causing bending and/or axial compression, the steel plate elements of their profiled facing are susceptible to local buckling. However, when compared to panels with no foam core, they demonstrate significantly improved local buckling behaviour because they are supported by foam. In order to quantify such improvements and to validate the use of available design buckling stress formulae, an investigation using finite element analyses and laboratory experiments was carried out on steel plates that are commonly used in Australia of varying yield stress and thickness supported by a polystyrene foam core. This paper presents the details of this investigation, the buckling results and their comparison with available design buckling formulae.