157 resultados para superheavy element
Resumo:
A small array composed of three monopole elements with very small element spacing on the order of λ/6 to λ/20 is considered for application in adaptive beamforming. The properties of this 3-port array are governed by strong mutual coupling. It is shown that for signal-to-noise maximization, it is not sufficient to adjust the weights to compensate for the effects of mutual coupling. The necessity for a RF-decoupling network (RF-DN) and its simple realization are shown. The array with closely spaced elements together with the RF-DN represents a superdirective antenna with a directivity of more than 10 dBi. It is shown that the required fractional frequency bandwidth and the available unloaded Q of the antenna and RF-DN structure determine the lower limit for the element spacing.
Resumo:
This paper addresses the problem of degradations in adaptive digital beam-forming (DBF) systems caused by mutual coupling between array elements. The focus is on compact arrays with reduced element spacing and, hence, strongly coupled elements. Deviations in the radiation patterns of coupled and (theoretically) uncoupled elements can be compensated for by weight-adjustments in DBF, but SNR degradation due to impedance mismatches cannot be compensated for via signal processing techniques. It is shown that this problem can be overcome via the implementation of a RF-decoupling-network. SNR enhancement is achieved at the cost of a reduced frequency bandwidth and an increased sensitivity to dissipative losses in the antenna and matching network structure.
Resumo:
This study investigated potential palaeoclimate proxies provided by rare earth element (REE) geochemistry in speleothems and in clay mineralogy of cave sediments. Speleothem and sediment samples were collected from a series of cave fill deposits that occurred with rich vertebrate fossil assemblages in and around Mount Etna National Park, Rockhampton (central coastal Queensland). The fossil deposits range from Plio- Pleistocene to Holocene in age (based on uranium/thorium dating) and appear to represent depositional environments ranging from enclosed rainforest to semi-arid grasslands. Therefore, the Mount Etna cave deposits offer the perfect opportunity to test new palaeoclimate tools as they include deposits that span a known significant climate shift on the basis of independent faunal data. The first section of this study investigates the REE distribution of the host limestone to provide baseline geochemistry for subsequent speleothem investigations. The Devonian Mount Etna Beds were found to be more complex than previous literature had documented. The studied limestone massif is overturned, highly recrystallised in parts and consists of numerous allochthonous blocks with different spatial orientations. Despite the complex geologic history of the Mount Etna Beds, Devonian seawater-like REE patterns were recovered in some parts of the limestone and baseline geochemistry was determined for the bulk limestone for comparison with speleothem REE patterns. The second part of the study focused on REE distribution in the karst system and the palaeoclimatic implications of such records. It was found that REEs have a high affinity for calcite surfaces and that REE distributions in speleothems vary between growth bands much more than along growth bands, thus providing a temporal record that may relate to environmental changes. The morphology of different speleothems (i.e., stalactites, stalagmites, and flowstones) has little bearing on REE distributions provided they are not contaminated with particulate fines. Thus, baseline knowledge developed in the study suggested that speleothems were basically comparable for assessing palaeoclimatically controlled variations in REE distributions. Speleothems from rainforest and semi-arid phases were compared and it was found that there are definable differences in REE distribution that can be attributed to climate. In particular during semiarid phases, total REE concentration decreased, LREE became more depleted, Y/Ho increased, La anomalies were more positive and Ce anomalies were more negative. This may reflect more soil development during rainforest phases and more organic particles and colloids, which are known to transport REEs, in karst waters. However, on a finer temporal scale (i.e. growth bands) within speleothems from the same climate regime, no difference was seen. It is suggested that this may be due to inadequate time for soil development changes on the time frames represented by differences in growth band density. The third part of the study was a reconnaissance investigation focused on mineralogy of clay cave sediments, illite/kaolinite ratios in particular, and the potential palaeoclimatic implications of such records. Although the sample distribution was not optimal, the preliminary results suggest that the illite/kaolinite ratio increased during cold and dry intervals, consistent with decreased chemical weathering during those times. The study provides a basic framework for future studies at differing latitudes to further constrain the parameters of the proxy. The identification of such a proxy recorded in cave sediment has broad implications as clay ratios could potentially provide a basic local climate proxy in the absence of fossil faunas and speleothem material. This study suggests that REEs distributed in speleothems may provide information about water throughput and soil formation, thus providing a potential palaeoclimate proxy. It highlights the importance of understanding the host limestone geochemistry and broadens the distribution and potential number of cave field sites as palaeoclimate information no longer relies solely on the presence of fossil faunas and or speleothems. However, additional research is required to better understand the temporal scales required for the proxies to be recognised.
Resumo:
The method on concurrent multi-scale model of structural behavior (CMSM-of-SB) for the purpose of structural health monitoring including model updating and validating has been studied. The detailed process of model updating and validating is discussed in terms of reduced scale specimen of the steel box girder in longitudinal stiffening truss of a long span bridge. Firstly, some influence factors affecting the accuracy of the CMSM-of-SB including the boundary restraint regidity, the geometry and material parameters on the toe of the weld and its neighbor are analyzed using sensitivity method. Then, sensitivity-based model updating technology is adopted to update the developed CMSM-of-SB and model verification is carried out through calculating and comparing stresses on different locations under various loading from dynamic characteristic and static response. It can be concluded that the CMSM-of-SB based on the substructure method is valid.
Resumo:
Webb et al. (2009) described a late Pleistocenecoral sample wherein the diagenetic stabilization of original coral aragonite to meteoric calcite was halted more or less mid-way through the process, allowing direct comparison of pre-diagenetic and post-diagenetic microstructure and trace element distributions. Those authors found that the rare earth elements (REEs) were relatively stable during meteoric diagenesis, unlike divalent cations such as Sr,and it was thus concluded that original, in this case marine, REE distributions potentially could be preserved through the meteoric carbonate stabilization process that must have affected many, if not most, ancient limestones. Although this was not the case in the analysed sample, they noted that where such diagenesis took place in laterally transported groundwater, trace elements derived from that groundwater could be incorporated into diagenetic calcite, thus altering the initial REE distribution (Banner et al., 1988). Hence, the paper was concerned with the diagenetic behaviour of REEs in a groundwater-dominated karst system. The comment offered by Johannesson (2011) does not question those research results, but rather, seeks to clarify an interpretation made by Webb et al. (2009) of an earlier paper, Johannesson et al. (2006).
Resumo:
The cable equation is one of the most fundamental equations for modeling neuronal dynamics. Cable equations with a fractional order temporal derivative have been introduced to model electrotonic properties of spiny neuronal dendrites. In this paper, the fractional cable equation involving two integro-differential operators is considered. The Galerkin finite element approximations of the fractional cable equation are proposed. The main contribution of this work is outlined as follow: • A semi-discrete finite difference approximation in time is proposed. We prove that the scheme is unconditionally stable, and the numerical solution converges to the exact solution with order O(Δt). • A semi-discrete difference scheme for improving the order of convergence for solving the fractional cable equation is proposed, and the numerical solution converges to the exact solution with order O((Δt)2). • Based on the above semi-discrete difference approximations, Galerkin finite element approximations in space for a full discretization are also investigated. • Finally, some numerical results are given to demonstrate the theoretical analysis.
Resumo:
The finite element (FE) analysis is an effective method to study the strength and predict the fracture risk of endodontically-treated teeth. This paper presents a rapid method developed to generate a comprehensive tooth FE model using data retrieved from micro-computed tomography (μCT). With this method, the inhomogeneity of material properties of teeth was included into the model without dividing the tooth model into different regions. The material properties of the tooth were assumed to be related to the mineral density. The fracture risk at different tooth portions was assessed for root canal treatments. The micro-CT images of a tooth were processed by a Matlab software programme and the CT numbers were retrieved. The tooth contours were obtained with thresholding segmentation using Amira. The inner and outer surfaces of the tooth were imported into Solidworks and a three-dimensional (3D) tooth model was constructed. An assembly of the tooth model with the periodontal ligament (PDL) layer and surrounding bone was imported into ABAQUS. The material properties of the tooth were calculated from the retrieved CT numbers via ABAQUS user's subroutines. Three root canal geometries (original and two enlargements) were investigated. The proposed method in this study can generate detailed 3D finite element models of a tooth with different root canal enlargements and filling materials, and would be very useful for the assessment of the fracture risk at different tooth portions after root canal treatments.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in buildings due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. Shear behaviour of LCBs with web openings is more complicated and their shear capacities are considerably reduced by the presence of web openings. However, limited research has been undertaken on the shear behaviour and strength of LCBs with web openings. Hence a numerical study was undertaken to investigate the shear behaviour and strength of LCBs with web openings. Finite element models of simply supported LCBs with aspect ratios of 1.0 and 1.5 were considered under a mid-span load. They were then validated by comparing their results with test results and used in a detailed parametric study. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs with web openings. Improved design equations were therefore proposed for the shear strength of LCBs with web openings. This paper presents the details of this numerical study of LCBs with web openings, and the results.
Resumo:
Stromatolites consist primarily of trapped and bound ambient sediment and/or authigenic mineral precipitates, but discrimination of the two constituents is difficult where stromatolites have a fine texture. We used laser ablation-inductively coupled plasma-mass spectrometry to measure trace element (rare earth element – REE, Y and Th) concentrations in both stromatolites (domical and branched) and closely associated particulate carbonate sediment in interspaces (spaces between columns or branches) from bioherms within the Neoproterozoic Bitter Springs Formation, central Australia. Our high resolution sampling allows discrimination of shale-normalised REE patterns between carbonate in stromatolites and immediately adjacent, fine-grained ambient particulate carbonate sediment from interspaces. Whereas all samples show similar negative La and Ce anomalies, positive Gd anomalies and chondritic Y/Ho ratios, the stromatolites and non-stromatolite sediment are distinguishable on the basis of consistently elevated light REEs (LREEs) in the stromatolitic laminae and relatively depleted LREEs in the particulate sediment samples. Additionally, concentrations of the lithophile element Th are higher in ambient sediment samples than in stromatolites, consistent with accumulation of some fine siliciclastic detrital material in the ambient sediment but a near absence in the stromatolites. These findings are consistent with the stromatolites consisting dominantly of in situ carbonate precipitates rather than trapped and bound ambient sediment. Hence, high resolution trace element (REE + Y, Th) geochemistry can discriminate fine-grained carbonates in these stromatolites from coeval non-stromatolitic carbonate sediment and demonstrates that the sampled stromatolites formed primarily from in situ precipitation, presumably within microbial mats/biofilms, rather than by trapping and binding of ambient sediment. Identification of the source of fine carbonate in stromatolites is significant, because if it is not too heavily contaminated by trapped ambient sediment, it may contain geochemical biosignatures and/or direct evidence of the local water chemistry in which the precipitates formed.
Resumo:
Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Conventionally the fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve given in ISO 834 (ISO, 1999). The standard time-temperature curve given in ISO 834 (ISO, 1999) originated from the application of wood burning furnaces in the early 1900s. However, modern commercial and residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the performance of LSF walls was undertaken using the developed real fire curves based on Eurocode parametric curves (ECS, 2002) and Barnett’s BFD curves (Barnett, 2002) using both full scale fire tests and numerical studies. It included LSF walls without any insulation, and the recently developed externally insulated composite panel system. This paper presents the details of the numerical studies and the results. It also includes brief details of the development of real building fire curves and experimental studies.
Resumo:
Graphical tasks have become a prominent aspect of mathematics assessment. From a conceptual stance, the purpose of this study was to better understand the composition of graphical tasks commonly used to assess students’ mathematics understandings. Through an iterative design, the investigation described the sense making of 11–12-year-olds as they decoded mathematics tasks which contained a graphic. An ongoing analysis of two phases of data collection was undertaken as we analysed the extent to which various elements of text, graphics, and symbols influenced student sense making. Specifically, the study outlined the changed behaviour (and performance) of the participants as they solved graphical tasks that had been modified with respect to these elements. We propose a theoretical framework for understanding the composition of a graphical task and identify three specific elements which are dependently and independently related to each other, namely: the graphic; the text; and the symbols. Results indicated that although changes to the graphical tasks were minimal, a change in student success and understanding was most evident when the graphic element was modified. Implications include the need for test designers to carefully consider the graphics embedded within mathematics tasks since the elements within graphical tasks greatly influence student understanding.
Resumo:
Wheel–rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel–rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel–rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional (3-D) finite element (FE) model for the impact analysis induced by the wheel flat is developed by use of the finite element analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this finite element analysis and they are important for track engineers to improve their understanding of the design and maintenance of the track system.
Resumo:
Preliminary data is presented on a detailed statistical analysis of k-factor determination for a single class of minerals (amphiboles) which contain a wide range of element concentrations. These amphiboles are homogeneous, contain few (if any) subsolidus microstructures and can be readily prepared for thin film analysis. In previous studies, element loss during the period of irradiation has been assumed negligible for the determination of k-factors. Since this phenomena may be significant for certain mineral systems, we also report on the effect of temperature on k-factor determination for various elements using small probe sizes (approx.20 nm).
Resumo:
Shoulder joint is a complex integration of soft and hard tissues. It plays an important role in performing daily activities and can be considered as a perfect compromise between mobility and stability. However, shoulder is vulnerable to complications such as dislocations and osteoarthritis. Finite element (FE) models have been developed to understand shoulder injury mechanisms, implications of disease on shoulder complex and in assessing the quality of shoulder implants. Further, although few, Finite element shoulder models have also been utilized to answer important clinical questions such as the difference between a normal and osteoarthritic shoulder joint. However, due to the absence of experimental validation, it is questionable whether the constitutive models applied in these FE models are adequate to represent mechanical behaviors of shoulder elements (Cartilages, Ligaments, Muscles etc), therefore the confidence of using current models in answering clinically relevant question. The main objective of this review is to critically evaluate the existing FE shoulder models that have been used to investigate clinical problems. Due concern is given to check the adequacy of representative constitutive models of shoulder elements in drawing clinically relevant conclusion. Suggestions have been given to improve the existing shoulder models by inclusion of adequate constitutive models for shoulder elements to confidently answer clinically relevant questions.