383 resultados para structural models
Resumo:
Time-domain models of marine structures based on frequency domain data are usually built upon the Cummins equation. This type of model is a vector integro-differential equation which involves convolution terms. These convolution terms are not convenient for analysis and design of motion control systems. In addition, these models are not efficient with respect to simulation time, and ease of implementation in standard simulation packages. For these reasons, different methods have been proposed in the literature as approximate alternative representations of the convolutions. Because the convolution is a linear operation, different approaches can be followed to obtain an approximately equivalent linear system in the form of either transfer function or state-space models. This process involves the use of system identification, and several options are available depending on how the identification problem is posed. This raises the question whether one method is better than the others. This paper therefore has three objectives. The first objective is to revisit some of the methods for replacing the convolutions, which have been reported in different areas of analysis of marine systems: hydrodynamics, wave energy conversion, and motion control systems. The second objective is to compare the different methods in terms of complexity and performance. For this purpose, a model for the response in the vertical plane of a modern containership is considered. The third objective is to describe the implementation of the resulting model in the standard simulation environment Matlab/Simulink.
Resumo:
Murine models with modified gene function as a result of N-ethyl-N-nitrosourea (ENU) mutagenesis have been used to study phenotypes resulting from genetic change. This study investigated genetic factors associated with red blood cell (RBC) physiology and structural integrity that may impact on blood component storage and transfusion outcome. Forward and reverse genetic approaches were employed with pedigrees of ENU-treated mice using a homozygous recessive breeding strategy. In a “forward genetic” approach, pedigree selection was based upon identification of an altered phenotype followed by exome sequencing to identify a causative mutation. In a second strategy, a “reverse genetic” approach based on selection of pedigrees with mutations in genes of interest was utilised and, following breeding to homozygosity, phenotype assessed. Thirty-three pedigrees were screened by the forward genetic approach. One pedigree demonstrated reticulocytosis, microcytic anaemia and thrombocytosis. Exome sequencing revealed a novel single nucleotide variation (SNV) in Ank1 encoding the RBC structural protein ankyrin-1 and the pedigree was designated Ank1EX34. The reticulocytosis and microcytic anaemia observed in the Ank1EX34 pedigree were similar to clinical features of hereditary spherocytosis in humans. For the reverse genetic approach three pedigrees with different point mutations in Spnb1 encoding RBC protein spectrin-1β, and one pedigree with a mutation in Epb4.1, encoding band 4.1 were selected for study. When bred to homozygosity two of the spectrin-1β pedigrees (a, b) demonstrated increased RBC count, haemoglobin (Hb) and haematocrit (HCT). The third Spnb1 mutation (spectrin-1β c) and mutation in Epb4.1 (band 4.1) did not significantly affect the haematological phenotype, despite these two mutations having a PolyPhen score predicting the mutation may be damaging. Exome sequencing allows rapid identification of causative mutations and development of databases of mutations predicted to be disruptive. These tools require further refinement but provide new approaches to the study of genetically defined changes that may impact on blood component storage and transfusion outcome.
Resumo:
During the early design stages of construction projects, accurate and timely cost feedback is critical to design decision making. This is particularly challenging for cost estimators, as they must quickly and accurately estimate the cost of the building when the design is still incomplete and evolving. State-of-the-art software tools typically use a rule-based approach to generate detailed quantities from the design details present in a building model and relate them to the cost items in a cost estimating database. In this paper, we propose a generic approach for creating and maintaining a cost estimate using flexible mappings between a building model and a cost estimate. The approach uses queries on the building design that are used to populate views, and each view is then associated with one or more cost items. The benefit of this approach is that the flexibility of modern query languages allows the estimator to encode a broad variety of relationships between the design and estimate. It also avoids the use of a common standard to which both designers and estimators must conform, allowing the estimator added flexibility and functionality to their work.
Resumo:
Objective To describe women’s reports of the model of care options General Practitioners (GPs) discussed with them at the first pregnancy consultation and women’s self-reported role in decisionmaking about model of care. Methods Women who had recently given birth responded to survey items about the models of care GPs discussed, their role in final decision-making, and socio-demographic, obstetric history, and early pregnancy characteristics. Results The proportion of women with whom each model of care was discussed varied between 8.2% (for private midwifery care with home birth) and 64.4% (GP shared care). Only 7.7% of women reported that all seven models were discussed. Exclusive discussion about private obstetric care and about all public models was common, and women’s health insurance status was the strongest predictor of the presence of discussions about each model. Most women (82.6%) reported active involvement in final decision-making about model of care. Conclusion Although most women report involvement in maternity model of care decisions, they remain largely uninformed about the breadth of available model of care options. Practical implications Strategies that facilitate women’s access to information on the differentiating features and outcomes for all models of care should be prioritized to better ensure equitable and quality decisions.
Resumo:
A single plant cell was modeled with smoothed particle hydrodynamics (SPH) and a discrete element method (DEM) to study the basic micromechanics that govern the cellular structural deformations during drying. This two-dimensional particle-based model consists of two components: a cell fluid model and a cell wall model. The cell fluid was approximated to a highly viscous Newtonian fluid and modeled with SPH. The cell wall was treated as a stiff semi-permeable solid membrane with visco-elastic properties and modeled as a neo-Hookean solid material using a DEM. Compared to existing meshfree particle-based plant cell models, we have specifically introduced cell wall–fluid attraction forces and cell wall bending stiffness effects to address the critical shrinkage characteristics of the plant cells during drying. Also, a moisture domain-based novel approach was used to simulate drying mechanisms within the particle scheme. The model performance was found to be mainly influenced by the particle resolution, initial gap between the outermost fluid particles and wall particles and number of particles in the SPH influence domain. A higher order smoothing kernel was used with adaptive smoothing length to improve the stability and accuracy of the model. Cell deformations at different states of cell dryness were qualitatively and quantitatively compared with microscopic experimental findings on apple cells and a fairly good agreement was observed with some exceptions. The wall–fluid attraction forces and cell wall bending stiffness were found to be significantly improving the model predictions. A detailed sensitivity analysis was also done to further investigate the influence of wall–fluid attraction forces, cell wall bending stiffness, cell wall stiffness and the particle resolution. This novel meshfree based modeling approach is highly applicable for cellular level deformation studies of plant food materials during drying, which characterize large deformations.
Resumo:
Computational models in physiology often integrate functional and structural information from a large range of spatio-temporal scales from the ionic to the whole organ level. Their sophistication raises both expectations and scepticism concerning how computational methods can improve our understanding of living organisms and also how they can reduce, replace and refine animal experiments. A fundamental requirement to fulfil these expectations and achieve the full potential of computational physiology is a clear understanding of what models represent and how they can be validated. The present study aims at informing strategies for validation by elucidating the complex interrelations between experiments, models and simulations in cardiac electrophysiology. We describe the processes, data and knowledge involved in the construction of whole ventricular multiscale models of cardiac electrophysiology. Our analysis reveals that models, simulations, and experiments are intertwined, in an assemblage that is a system itself, namely the model-simulation-experiment (MSE) system. Validation must therefore take into account the complex interplay between models, simulations and experiments. Key points for developing strategies for validation are: 1) understanding sources of bio-variability is crucial to the comparison between simulation and experimental results; 2) robustness of techniques and tools is a pre-requisite to conducting physiological investigations using the MSE system; 3) definition and adoption of standards facilitates interoperability of experiments, models and simulations; 4) physiological validation must be understood as an iterative process that defines the specific aspects of electrophysiology the MSE system targets, and is driven by advancements in experimental and computational methods and the combination of both.
Resumo:
Existing crowd counting algorithms rely on holistic, local or histogram based features to capture crowd properties. Regression is then employed to estimate the crowd size. Insufficient testing across multiple datasets has made it difficult to compare and contrast different methodologies. This paper presents an evaluation across multiple datasets to compare holistic, local and histogram based methods, and to compare various image features and regression models. A K-fold cross validation protocol is followed to evaluate the performance across five public datasets: UCSD, PETS 2009, Fudan, Mall and Grand Central datasets. Image features are categorised into five types: size, shape, edges, keypoints and textures. The regression models evaluated are: Gaussian process regression (GPR), linear regression, K nearest neighbours (KNN) and neural networks (NN). The results demonstrate that local features outperform equivalent holistic and histogram based features; optimal performance is observed using all image features except for textures; and that GPR outperforms linear, KNN and NN regression
Resumo:
Finite element (FE) model studies have made important contributions to our understanding of functional biomechanics of the lumbar spine. However, if a model is used to answer clinical and biomechanical questions over a certain population, their inherently large inter-subject variability has to be considered. Current FE model studies, however, generally account only for a single distinct spinal geometry with one set of material properties. This raises questions concerning their predictive power, their range of results and on their agreement with in vitro and in vivo values. Eight well-established FE models of the lumbar spine (L1-5) of different research centres around the globe were subjected to pure and combined loading modes and compared to in vitro and in vivo measurements for intervertebral rotations, disc pressures and facet joint forces. Under pure moment loading, the predicted L1-5 rotations of almost all models fell within the reported in vitro ranges, and their median values differed on average by only 2° for flexion-extension, 1° for lateral bending and 5° for axial rotation. Predicted median facet joint forces and disc pressures were also in good agreement with published median in vitro values. However, the ranges of predictions were larger and exceeded those reported in vitro, especially for the facet joint forces. For all combined loading modes, except for flexion, predicted median segmental intervertebral rotations and disc pressures were in good agreement with measured in vivo values. In light of high inter-subject variability, the generalization of results of a single model to a population remains a concern. This study demonstrated that the pooled median of individual model results, similar to a probabilistic approach, can be used as an improved predictive tool in order to estimate the response of the lumbar spine.
Resumo:
We present a machine learning model that predicts a structural disruption score from a protein s primary structure. SCHEMA was introduced by Frances Arnold and colleagues as a method for determining putative recombination sites of a protein on the basis of the full (PDB) description of its structure. The present method provides an alternative to SCHEMA that is able to determine the same score from sequence data only. Circumventing the need for resolving the full structure enables the exploration of yet unresolved and even hypothetical sequences for protein design efforts. Deriving the SCHEMA score from a primary structure is achieved using a two step approach: first predicting a secondary structure from the sequence and then predicting the SCHEMA score from the predicted secondary structure. The correlation coefficient for the prediction is 0.88 and indicates the feasibility of replacing SCHEMA with little loss of precision.
Resumo:
Over the past decades there has been a considerable development in the modeling of car-following (CF) behavior as a result of research undertaken by both traffic engineers and traffic psychologists. While traffic engineers seek to understand the behavior of a traffic stream, traffic psychologists seek to describe the human abilities and errors involved in the driving process. This paper provides a comprehensive review of these two research streams. It is necessary to consider human-factors in {CF} modeling for a more realistic representation of {CF} behavior in complex driving situations (for example, in traffic breakdowns, crash-prone situations, and adverse weather conditions) to improve traffic safety and to better understand widely-reported puzzling traffic flow phenomena, such as capacity drop, stop-and-go oscillations, and traffic hysteresis. While there are some excellent reviews of {CF} models available in the literature, none of these specifically focuses on the human factors in these models. This paper addresses this gap by reviewing the available literature with a specific focus on the latest advances in car-following models from both the engineering and human behavior points of view. In so doing, it analyses the benefits and limitations of various models and highlights future research needs in the area.
Resumo:
Angiogenesis is indispensable for solid tumor expansion, and thus it has become a major target of cancer research and anti-cancer therapies. Deciphering the arcane actions of various cell populations during tumor angiogenesis requires sophisticated research models, which could capture the dynamics and complexity of the process. There is a continuous need for improvement of existing research models, which engages interdisciplinary approaches of tissue engineering with life sciences. Tireless efforts to develop a new model to study tumor angiogenesis result in innovative solutions, which bring us one step closer to decipher the dubious nature of cancer. This review aims to overview the recent developments, current limitations and future challenges in three-dimensional tissue-engineered models for the study of tumor angiogenesis and for the purpose of elucidating novel targets aimed at anti-cancer drug discovery.
Resumo:
Engineering students are best able to understand theory when one explains it in relation to realistic problems and its practical applications. Teaching theory in isolation has led to lower levels of comprehension and motivation and a correspondingly higher rate of failure. At Queensland University of Technology, a number of new methods have been introduced recently to improve the teaching and learning of steel structural design at undergradt1ate level. In the basic steel structures subject a project-based teaching method was introduced in which the students were required to analyse, design and build the lightest I most efficient steel columns for a given target capacity. A design assignment involving simple, but real structures was also introduced in the basic steel structures subject. Both these exercises simulated realistic engineering problems from the early years of the course and produced a range of benefits. Improvements to the teaching and learning was also made through integration of a number of related structural engineering subjects and by the introduction of animated computer models and laboratory models. This paper presents the details of all these innovative methods which improved greatly the students' understanding of the steel structures design process.
Resumo:
Railway capacity determination and expansion are very important topics. In prior research, the competition between different entities such as train services and train types, on different network corridors however have been ignored, poorly modelled, or else assumed to be static. In response, a comprehensive set of multi-objective models have been formulated in this article to perform a trade-off analysis. These models determine the total absolute capacity of railway networks as the most equitable solution according to a clearly defined set of competing objectives. The models also perform a sensitivity analysis of capacity with respect to those competing objectives. The models have been extensively tested on a case study and their significant worth is shown. The models were solved using a variety of techniques however an adaptive E constraint method was shown to be most superior. In order to identify only the best solution, a Simulated Annealing meta-heuristic was implemented and tested. However a linearization technique based upon separable programming was also developed and shown to be superior in terms of solution quality but far less in terms of computational time.
Resumo:
Wound healing and tumour growth involve collective cell spreading, which is driven by individual motility and proliferation events within a population of cells. Mathematical models are often used to interpret experimental data and to estimate the parameters so that predictions can be made. Existing methods for parameter estimation typically assume that these parameters are constants and often ignore any uncertainty in the estimated values. We use approximate Bayesian computation (ABC) to estimate the cell diffusivity, D, and the cell proliferation rate, λ, from a discrete model of collective cell spreading, and we quantify the uncertainty associated with these estimates using Bayesian inference. We use a detailed experimental data set describing the collective cell spreading of 3T3 fibroblast cells. The ABC analysis is conducted for different combinations of initial cell densities and experimental times in two separate scenarios: (i) where collective cell spreading is driven by cell motility alone, and (ii) where collective cell spreading is driven by combined cell motility and cell proliferation. We find that D can be estimated precisely, with a small coefficient of variation (CV) of 2–6%. Our results indicate that D appears to depend on the experimental time, which is a feature that has been previously overlooked. Assuming that the values of D are the same in both experimental scenarios, we use the information about D from the first experimental scenario to obtain reasonably precise estimates of λ, with a CV between 4 and 12%. Our estimates of D and λ are consistent with previously reported values; however, our method is based on a straightforward measurement of the position of the leading edge whereas previous approaches have involved expensive cell counting techniques. Additional insights gained using a fully Bayesian approach justify the computational cost, especially since it allows us to accommodate information from different experiments in a principled way.