65 resultados para stripping extraction of positive ions.
Resumo:
Erythropoietin (EPO), a glycoprotein hormone of ∼34 kDa, is an important hematopoietic growth factor, mainly produced in the kidney and controls the number of red blood cells circulating in the blood stream. Sensitive and rapid recombinant human EPO (rHuEPO) detection tools that improve on the current laborious EPO detection techniques are in high demand for both clinical and sports industry. A sensitive aptamer-functionalized biosensor (aptasensor) has been developed by controlled growth of gold nanostructures (AuNS) over a gold substrate (pAu/AuNS). The aptasensor selectively binds to rHuEPO and, therefore, was used to extract and detect the drug from horse plasma by surface enhanced Raman spectroscopy (SERS). Due to the nanogap separation between the nanostructures, the high population and distribution of hot spots on the pAu/AuNS substrate surface, strong signal enhancement was acquired. By using wide area illumination (WAI) setting for the Raman detection, a low RSD of 4.92% over 150 SERS measurements was achieved. The significant reproducibility of the new biosensor addresses the serious problem of SERS signal inconsistency that hampers the use of the technique in the field. The WAI setting is compatible with handheld Raman devices. Therefore, the new aptasensor can be used for the selective extraction of rHuEPO from biological fluids and subsequently screened with handheld Raman spectrometer for SERS based in-field protein detection.
Resumo:
Using a combination of multivariate statistical techniques and the graphical assessment of major ion ratios, the influences on hydrochemical variability of coal seam gas (or coal bed methane) groundwaters from several sites in the Surat and Clarence-Moreton basins in Queensland, Australia, were investigated. Several characteristic relationships between major ions were observed: 1) strong positive linear correlation between the Na/Cl and alkalinity/Cl ratios; 2) an exponentially decaying trend between the Na/Cl and Na/alkalinity ratios; 3) inverse linear relationships between increasing chloride concentrations and decreasing pH for high salinity groundwaters, and; 4) high residual alkalinity for lower salinity waters, and an inverse relationship between decreasing residual alkalinity and increasing chloride concentrations for more saline waters. The interpretation of the hydrochemical data provides invaluable insights into the hydrochemical evolution of coal seam gas (CSG) groundwaters that considers both the source of major ions in coals and the influence of microbial activity. Elevated chloride and sodium concentrations in more saline groundwaters appear to be influenced by organic-bound chlorine held in the coal matrix; a sodium and chloride ion source that has largely been neglected in previous CSG groundwater studies. However, contrastingly high concentrations of bicarbonate in low salinity waters could not be explained, and are possibly associated with a number of different factors such as coal degradation, methanogenic processes, the evolution of high-bicarbonate NaHCO3 water types earlier on in the evolutionary pathway, and variability in gas reservoir characteristics. Using recently published data for CSG groundwaters in different basins, the characteristic major ion relationships identified for new data presented in this study were also observed in other CSG groundwaters from Australia, as well as for those in the Illinois Basin in the USA. This observation suggests that where coal maceral content and the dominant methanogenic pathway are similar, and where organic-bound chlorine is relatively abundant, distinct hydrochemical responses may be observed. Comparisons with published data of other NaHCO3 water types in non-CSG environments suggest that these characteristic major ion relationships described here can: i) serve as an indicator of potential CSG groundwaters in certain coal-bearing aquifers that contain methane; and ii) help in the development of strategic sampling programmes for CSG exploration and to monitor potential impacts of CSG activities on groundwater resources.
Resumo:
The Coal Seam Gas (CSG) industry in Australia has grown significantly in recent years. During the gas extraction process, water is also recovered which is brackish in character. In order to facilitate beneficial reuse of the water, the CSG industry has primarily invested in Reverse Osmosis (RO) as the primary method for associated water desalination. However, the presence of alkaline earth ions in the water combined with the inherent alkalinity of the water may result in RO membrane scaling. Consequently, weak acid cation (WAC) synthetic ion exchange resins were investigated as a potential solution to this potential problem. It was shown that resins were indeed highly efficient at treating single and multi-component solutions of alkaline earth ions. The interaction of the ions with the resin was found to be considerably more complex that previously reported.
Resumo:
The dispersion of aqueous γ-Y2Si2O7 suspensions, which contain only one component but have a complex ion environment, was studied by the introduction of two different polymer dispersants, polyethylenimine (PEI) and polyacrylic acid (PAA). The suspension without any dispersant remains stable in the pH range of 9-11.5 because of electrostatic repulsion, while it is flocculated upon stirring due to the readsorption of hydrolyzed ions on the colloid surface. However, suspensions with 1 dwb% PEI exhibit greater stability in the pH range of 4-11.5. The addition of PEI shifts the isoelectric point (IEP) of the suspensions from pH 5.8 to 10.8. Near the IEP (pHIEP=10.8), the stability of the suspensions with PEI is dominated by the steric effect. When the pH is decreased to acid direction, the stabilization mechanism is changed from steric hindrance to an electrosteric effect little by little. PAA also has the effect of reducing the hydrolysis speed via a "buffer effect" in the basic pH range, but the lack of adsorption between the highly ionized anionic polymer molecules and the negative colloid particle surfaces shows no positive effect on hydrolysis of colloids and on the stabilization of Y2Si 2O7 suspensions.
Resumo:
Reverse osmosis is the dominant technology utilized for desalination of saline water produced during the extraction of coal seam gas. Alternatively, ion exchange is of interest due to potential cost advantages. However, there is limited information regarding the column performance of strong acid cation resin for removal of sodium ions from both model and actual coal seam water samples. In particular, the impact of bed depth, flow rate, and regeneration was not clear. Consequently, this study applied Bed Depth Service Time (BDST) models to reveal that increasing sodium ion concentration and flow rates diminished the time required for breakthrough to occur. The loading of sodium ions on fresh resin was calculated to be ca. 71.1 g Na/kg resin. Difficulties in regeneration of the resin using hydrochloric acid solutions were discovered, with 86% recovery of exchange sites observed. The maximum concentration of sodium ions in the regenerant brine was found to be 47,400 mg/L under the conditions employed. The volume of regenerant waste formed was 6.2% of the total volume of water treated. A coal seam water sample was found to load the resin with only 53.5 g Na/kg resin, which was consistent with not only the co-presence of more favoured ions such as calcium, magnesium, barium and strontium, but also inefficient regeneration of the resin prior to the coal seam water test.